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Summary

• A Fresnel zone plate was used to obtain time-gated x-ray images with a resolution of 
~1 mm, of a single-mode perturbed interface between brominated plastic and low-
density foam

• This platform is being developed to study interfacial instability growth, which may be 
a source of fuel-ablator mix in direct-drive ICF implosions

• As in the experiment, DRACO simulations show a high level of growth and roll-up but 
predict a greater blast-wave speed in the foam

Modeling of shock-driven highly nonlinear interfacial perturbation growth shows 
agreement with experimental mixing length but not perturbation morphology

____________
CRF: Carbonized resorcinol-formaldehyde
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• Radiation from tritium decay in permeation-filled targets can cause 
localized perturbations at the inner ablator shell surface

• OMEGA cryo targets are estimated to have dozens to over 100 of 
these features

• Voids in the ice and defects at the fuel ablator interface may also 
contribute to mixing

• Isolated features at the ablation surface and in the shell have been 
shown by simulation to be capable of transporting ablator material 
into the core* 

• Experimentally, excess photon yield in OMEGA cryo implosions is 
correlated with low shell adiabat and inferred ablator mix fraction in 
the hot spot**, evidence of fuel-shell mixing

Fuel-ablator mix due to interfacial instability growth is a possible cause of 
performance degradation in LDD ICF implosions

____________
LDD: Laser direct-drive
*  I. V. Igumenshchev, V. N. Goncharov, W. T. Shmayda et al., Phys. Plasmas 20, 082703 (2013).
** T. C. Sangster, V. N. Goncharov, R. Betti et al., Phys. Plasmas 20, 056317 (2013); R. Epstein, 
V. N. Goncharov, F. J. Marshall et al., Phys. Plasmas 22, 022707 (2015); see also V. N. 
Goncharov, T. C. Sangster, R. Betti et al., Phys. Plasmas 21, 056315 (2014).

Excess photon yield: 
indicator of fuel-shell mix

See S. Miller et al., JO04.00007
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• A multilayer planar target is driven with a 2.25-kJ, 7 × 1014 W/cm2, 1-ns pulse, using SG650 DPPs

• The interface between brominated plastic and CRF foam is perturbed with a single-mode, 5- or 10-mm peak-to-
valley, l = 50 mm wavelength perturbation (so A/l ~ 0.2) 

• This platform uses ambient targets, with the goal of transitioning to D2 cryogenic cells, multiple shocks, and ICF-
relevant perturbations

A planar shock-driven platform has been developed on OMEGA and OMEGA EP to 
study interfacial growth

____________
DPP: Distributed Phase Plate
CRF: Carbonized resorcinol-formaldehyde

See P. Nilson et al., BO03.00008
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• A Ti He𝜶, 4.75-keV area backlighter is used, with a 100-ps exposure time

• The x-ray CCD uses a high-magnification zone plate for ~1 mm 
resolution

• Radiographs are taken late in time when spike speed is small, 
minimizing motion blurring: VspikeDtexp ~ (53 km/s)×(100 ps) ~ 5 mm

• Experiments allow determination of the mix-region size, to test 
modeling in the challenging, highly nonlinear growth regime

These experiments use high-resolution, late-time imaging of perturbation growth

6μm bar

FZP grid test image

____________
FZP: Fresnel Zone Plate
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• Growth of the pre-imposed modulation is due to both RMI from the primary shock and slow deceleration (RTI) due 
to the end-of-pulse rarefaction fan

• At the interface,                             ; vorticity deposited during shock transit is conserved

• Neither RMI nor RTI is expected based on linear theory to dominate (and A < 0, so a phase inversion occurs):
－ ; A ~ 1/2, g ~ 3 mm/ns2, k = 2p/50 mm = 0.12 mm
－ ; Du ~ 30 mm/ns

• The combination of these leads to a growing mix region at the interface which quickly becomes nonlinear

The interface is unstable to both Richtmyer-Meshkov and Rayleigh-Taylor growth

 10 ns exp ~ 20RTG dt Agk 
   10 ns 1 ~ 14RMG Ak u t  D

____________
RMI: Richtmyer-Meshkov Instability
RTI: Rayleigh-Taylor Instability

Kn 1, Re 1



8

Simulations predict resolvable instability growth

5 ns 15 ns

• DRACO is run in Eulerian mode using a 
2nd-order accurate PPM hydro solver

• Simulations also show qualitative 
agreement in the nonlinear perturbation 
growth, but with discrepancies in the 
width of the spike head

• Timing between experiment and 
simulation needs to be confirmed

• The blast-wave position differs between 
simulation and experimental data

DRACOOMEGA

98672
5-mm ptv

____________
PPM: Piecewise Parabolic Method

98674
10-mm ptv

Spike tips

Blast 
wave
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An “air gap” between the perturbed CHBr and the foam affects the spike morphology

5 ns 10 ns 15 ns

No gap Gap, truncated 
peaks “Air” gap

• “Air” gap causes a 
high initial At ~ 1

• This is followed by a 
reshock due to the 
reflected shock off 
the CRF, during the 
RMI phase reversal

• The result is greater 
amplitude and 
deeper rollup 
structure

• Little is known about the region where the two layers meet, which can have an observable effect

CHBr

CRF
gap

Shot 
99046
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Foam porosity may be the cause of an over-prediction of the blast-wave speed

5 ns 10 ns 15 ns

• The observed spike tip-to-blast wave position is much greater in simulation than experiment

• This may be due to modeling the foam using SESAME tables as a homogenous mixture (89% C, 
7% H and 4% O)
－ The CRF foam has a high porosity: 
－ Shocked porous materials can exhibit initial void collapse leading to an increase in post-

shock internal energy and, for sufficiently high porosity, an “anomalous” Hugoniot where 
post-shock density decreases with increasing shock strength*

－ The compressive Young’s modulus of CRF is ~ 5 MPa << Pshock**

• However, there are reasons to believe porosity is not playing a significant role:
－ The shock is predicted to be strong even long after the end of the pulse: Pshock ~ 4 Mbar
－ Radiation from the shock front is estimated to cause void closure and homogenize 

shocked foams***

ave C 0.95   

____________
*   Ya. B. Zel’dovich, Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena

**  F.-M. Kong, S. R. Buckley, C. L. Giles, Jr. et al., UCRL-LR-106946 (1991).
*** P. Belancourt, “Strong Shock Waves in Highly Porous Materials, Ph. D. thesis, U. Michican (2019).
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Modeling of shock-driven highly nonlinear interfacial perturbation growth shows 
agreement with experimental mixing length but not perturbation morphology

Summary/Conclusions

• A Fresnel zone plate was used to obtain time-gated x-ray images with a resolution of 
~1 mm, of a single-mode perturbed interface between brominated plastic and low-
density foam

• This platform is being developed to study interfacial instability growth, which may be 
a source of fuel-ablator mix in direct-drive ICF implosions

• As in the experiment, DRACO simulations show a high level of growth and roll-up but 
predict a greater blast-wave speed in the foam


