Theory and Modeling of Blast-Wave—Driven Interfacial Hydrodynamic Instability in OMEGA Planar Experiments

T. J. B. Collins
University of Rochester
Laboratory for Laser Energetics

63rd Annual Meeting of the American Physical Society
Division of Plasma Physics
Pittsburgh, PA
8 November–12 November 2021
Summary

Modeling of shock-driven highly nonlinear interfacial perturbation growth shows agreement with experimental mixing length but not perturbation morphology.

- A Fresnel zone plate was used to obtain time-gated x-ray images with a resolution of ~1 μm, of a single-mode perturbed interface between brominated plastic and low-density foam.
- This platform is being developed to study interfacial instability growth, which may be a source of fuel-ablator mix in direct-drive ICF implosions.
- As in the experiment, DRACO simulations show a high level of growth and roll-up but predict a greater blast-wave speed in the foam.

CRF: Carbonized resorcinol-formaldehyde
Collaborators

University of Rochester
Laboratory for Laser Energetics
Fuel-ablator mix due to interfacial instability growth is a possible cause of performance degradation in LDD ICF implosions

- Radiation from tritium decay in permeation-filled targets can cause localized perturbations at the inner ablator shell surface
- OMEGA cryo targets are estimated to have dozens to over 100 of these features
- Voids in the ice and defects at the fuel ablator interface may also contribute to mixing
- Isolated features at the ablation surface and in the shell have been shown by simulation to be capable of transporting ablator material into the core*
- Experimentally, excess photon yield in OMEGA cryo implosions is correlated with low shell adiabat and inferred ablator mix fraction in the hot spot**, evidence of fuel-shell mixing

See S. Miller et al., JO04.00007
A planar shock-driven platform has been developed on OMEGA and OMEGA EP to study interfacial growth

- A multilayer planar target is driven with a 2.25-kJ, 7×10^{14} W/cm², 1-ns pulse, using SG650 DPPs
- The interface between brominated plastic and CRF foam is perturbed with a single-mode, 5- or 10-µm peak-to-valley, $\lambda = 50$ µm wavelength perturbation (so $A/\lambda \sim 0.2$)
- This platform uses ambient targets, with the goal of transitioning to D₂ cryogenic cells, multiple shocks, and ICF-relevant perturbations

See P. Nilson et al., BO03.00008
These experiments use high-resolution, late-time imaging of perturbation growth

- A Ti He\(_\alpha\), 4.75-keV area backlighter is used, with a 100-ps exposure time
- The x-ray CCD uses a high-magnification zone plate for ~1 \(\mu m\) resolution
- Radiographs are taken late in time when spike speed is small, minimizing motion blurring: \(V_{\text{spike}} \Delta t_{\text{exp}} \sim (53 \text{ km/s}) \times (100 \text{ ps}) \sim 5 \mu m\)
- Experiments allow determination of the mix-region size, to test modeling in the challenging, highly nonlinear growth regime
The interface is unstable to both Richtmyer-Meshkov and Rayleigh-Taylor growth

- Growth of the pre-imposed modulation is due to both RMI from the primary shock and slow deceleration (RTI) due to the end-of-pulse rarefaction fan
- At the interface, $Kn \ll 1$, $Re \ll 1$; vorticity deposited during shock transit is conserved
- Neither RMI nor RTI is expected based on linear theory to dominate (and $A < 0$, so a phase inversion occurs):
 - $G_{RT}(10 \text{ ns}) \approx \exp \int dt \sqrt{Agk} \sim 20$; $A \sim 1/2$, $g \sim 3 \mu m/\text{ns}^2$, $k = 2\pi/50 \mu m = 0.12 \mu m$
 - $G_{RM}(10 \text{ ns}) \approx 1 + Ak(\Delta u)t \sim 14$; $\Delta u \sim 30 \mu m/\text{ns}$
- The combination of these leads to a growing mix region at the interface which quickly becomes nonlinear

\[\text{RMI: Richtmyer-Meshkov Instability} \]
\[\text{RTI: Rayleigh-Taylor Instability} \]
Simulations predict resolvable instability growth

- DRACO is run in Eulerian mode using a 2nd-order accurate PPM hydro solver
- Simulations also show qualitative agreement in the nonlinear perturbation growth, but with discrepancies in the width of the spike head
- Timing between experiment and simulation needs to be confirmed
- The blast-wave position differs between simulation and experimental data

PPM: Piecewise Parabolic Method
Simulations predict resolvable instability growth

- DRACO is run in Eulerian mode using a 2nd-order accurate PPM hydro solver
- Simulations also show qualitative agreement in the nonlinear perturbation growth, but with discrepancies in the width of the spike head
- Timing between experiment and simulation needs to be confirmed
- The blast-wave position differs between simulation and experimental data

PPM: Piecewise Parabolic Method
An “air gap” between the perturbed CHBr and the foam affects the spike morphology

- Little is known about the region where the two layers meet, which can have an observable effect

```
No gap  Gap, truncated peaks  “Air” gap

• “Air” gap causes a high initial At ~ 1
• This is followed by a reshock due to the reflected shock off the CRF, during the RMI phase reversal
• The result is greater amplitude and deeper rollup structure

Shot 99046
```
Foam porosity may be the cause of an over-prediction of the blast-wave speed

- The observed spike tip-to-blast wave position is much greater in simulation than experiment
- This may be due to modeling the foam using SESAME tables as a homogenous mixture (89% C, 7% H and 4% O)
 - The CRF foam has a high porosity: \(\varphi = \rho_{\text{ave}}/\rho_C \approx 0.95 \)
 - Shocked porous materials can exhibit initial void collapse leading to an increase in post-shock internal energy and, for sufficiently high porosity, an “anomalous” Hugoniot where post-shock density decreases with increasing shock strength*
 - The compressive Young’s modulus of CRF is \(\sim 5 \text{ MPa} \ll P_{\text{shock}} \)**
- However, there are reasons to believe porosity is not playing a significant role:
 - The shock is predicted to be strong even long after the end of the pulse: \(P_{\text{shock}} \sim 4 \text{ Mbar} \)
 - Radiation from the shock front is estimated to cause void closure and homogenize shocked foams***

Modeling of shock-driven highly nonlinear interfacial perturbation growth shows agreement with experimental mixing length but not perturbation morphology

Summary/Conclusions

- A Fresnel zone plate was used to obtain time-gated x-ray images with a resolution of ~1 μm, of a single-mode perturbed interface between brominated plastic and low-density foam
- This platform is being developed to study interfacial instability growth, which may be a source of fuel-ablator mix in direct-drive ICF implosions
- As in the experiment, DRACO simulations show a high level of growth and roll-up but predict a greater blast-wave speed in the foam