Three-Dimensional Hot Spot Reconstruction from Cryogenic DT Polar-Direct-Drive Implosions on OMEGA

K. Churnetski
University of Rochester
Laboratory for Laser Energetics

63rd Annual Meeting of the American Physical Society Division of Plasma Physics
Pittsburgh, PA
8–12 November 2021
Summary

A 3-D hot-spot model* has been developed to study and interpret the symmetry of implosions at OMEGA

- A technique was developed to reconstruct the 3-D intensity profile using a Spherical Harmonic Gaussian function
- This technique was validated by reconstructing synthetic data produced by the hydrodynamic code DEC3D**, and then applied to experimental data
- Causal effects from the laser drive show the expected change in hot-spot shape from prolate to oblate, indicated by the change in sign of the inferred $A_{2,0}$ coefficients
 - The magnitudes of the inferred $A_{2,0}$ coefficients are in agreement with the magnitudes of laser drive asymmetries

* K. M. Woo et al., ZO04.00006, this conference.
Collaborators

University of Rochester
Laboratory for Laser Energetics
PDD implosions can be used to generate large asymmetries, and make a useful platform for testing aspects of 3-D reconstruction.

Precise characterization of these asymmetries could help us to improve implosion performance.

PDD: polar-direct-drive
Magnitude and orientation of the low-mode shape can be inferred from x-ray images along different lines of sight

The 3-D shape of the hot-spot emission can be reconstructed using data from several quasi-orthogonal lines of sight.
A 3-D hot-spot intensity model* was developed to reconstruct the hot-spot emission profile of direct-drive implosions on OMEGA.

Spherical harmonic Gaussian function:

\[
\ln I(r, \theta, \phi) = \sum_{n=0}^{\infty} \sigma_n r^n \sin^n \theta \cos^n \phi = \sum_{n=0}^{\infty} \sigma_n R^n \left[1 + \sum_{l=0}^{\infty} \sum_{m=-l}^{l} A_{lm}(R) Y_{lm}(\theta, \phi) \right] \]

Calculate error between experimental data and model

Compare with experimental data

Estimate for solution

2-D projection in detector planes

* K. M. Woo et al., ZO04.00006, this conference.
This approach has been tested against forward-simulated data from DEC3D*, and shows good agreement on major and minor radii.

Reconstruction of experiment 96581 shows a prolate-shaped hot-spot, indicated by a negative $A_{2,0}$ coefficient.

Spherical harmonic coefficients:

<table>
<thead>
<tr>
<th></th>
<th>$M = -3$</th>
<th>$M = -2$</th>
<th>$M = -1$</th>
<th>$M = 0$</th>
<th>$M = 1$</th>
<th>$M = 2$</th>
<th>$M = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L = 1$</td>
<td></td>
<td>0.02 ± 0.01</td>
<td>0.03 ± 0.01</td>
<td>0.04 ± 0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L = 2$</td>
<td></td>
<td>−0.21 ± 0.01</td>
<td>0.1 ± 0.01</td>
<td>−0.47 ± 0.03</td>
<td>0.033 ± 0.003</td>
<td>−0.24 ± 0.02</td>
<td></td>
</tr>
<tr>
<td>$L = 3$</td>
<td>0.02 ± 0.01</td>
<td>0.08 ± 0.03</td>
<td>−0.05 ± 0.01</td>
<td>0.03 ± 0.01</td>
<td>−0.07 ± 0.01</td>
<td>−0.09 ± 0.02</td>
<td>0.23 ± 0.03</td>
</tr>
</tbody>
</table>

A better understanding of the fitting process and uniqueness is needed.
Experiment 96578 shows the expected change to an oblate hot-spot, indicated in the change in sign of coefficient $A_{2,0}$.

The magnitude of the $A_{2,0}$ coefficient is reduced by a factor of 2 in accordance with the reduction in laser drive asymmetry by a factor of 2.

Spherical harmonic coefficients:

<table>
<thead>
<tr>
<th>M</th>
<th>$M = -3$</th>
<th>$M = -2$</th>
<th>$M = -1$</th>
<th>$M = 0$</th>
<th>$M = 1$</th>
<th>$M = 2$</th>
<th>$M = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L = 1$</td>
<td></td>
<td>-0.13 ± 0.01</td>
<td>0.18 ± 0.01</td>
<td>-0.13 ± 0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L = 2$</td>
<td>-0.2 ± 0.01</td>
<td>-0.08 ± 0.01</td>
<td>$\mathbf{0.17} \pm 0.01$</td>
<td>-0.09 ± 0.01</td>
<td>-0.24 ± 0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L = 3$</td>
<td>-0.05 ± 0.01</td>
<td>-0.13 ± 0.01</td>
<td>-0.17 ± 0.01</td>
<td>-0.18 ± 0.01</td>
<td>-0.07 ± 0.01</td>
<td>-0.22 ± 0.01</td>
<td>0.25 ± 0.02</td>
</tr>
</tbody>
</table>
A 3-D hot-spot model* has been developed to study and interpret the symmetry of implosions at OMEGA

- A technique was developed to reconstruct the 3-D intensity profile using a Spherical Harmonic Gaussian function
- This technique was validated by reconstructing synthetic data produced by the hydrodynamic code DEC3D**, and then applied to experimental data
- Causal effects from the laser drive show the expected change in hot-spot shape from prolate to oblate, indicated by the change in sign of the inferred $A_{2,0}$ coefficients
 - The magnitudes of the inferred $A_{2,0}$ coefficients are in agreement with the magnitudes of laser drive asymmetries

Future work will consider uniqueness, the highest mode that is resolved by existing data, and the potential value of improvements in resolution and additional lines of sight

*K. M. Woo et al., Z004.00006, this conference.