Characterization of the x-ray emission from spherical shells for x-ray absorption spectroscopy experiments on OMEGA-60

63rd Annual Meeting of the **American Physical Society Division of Plasma Physics** Pittsburgh, Pennsylvania 8 – 12 November 2021

<u>;</u>65

UR 🔌 LLE

University of Rochester

D. A. Chin

We have characterized the performance of CH shell implosions, a common source for x-ray absorption spectroscopy (XAS) experiments*

- XAS provides the temperature, density and complex chemistry of the probed material
- Implosion core emission is an ideal x-ray source for XAS, because it is bright, broadband, short duration and small
- The corona and afterglow emission stages can account for 25% of the total x-ray emission and can impact the spectral resolution due to source size broadening
- Improved illumination strategies and inner metal layers increase x-ray
 emission from CH shell implosions

Collaborators

P.M. Nilson, D.T. Bishel, E. Smith, R.S. Craxton J.R. Rygg, G.W. Collins University of Rochester Laboratory for Laser Energetics

> J.J. Ruby, F. Coppari, A. Coleman and Y. Ping Lawrence Livermore National Laboratory

> > This material is based upon work supported by the DOE NNSA SSGF under cooperative agreement number DE-NA0003960

Spectral features near an x-ray absorption edge can be used to deduce the electronic density of states and atomic structure of matter

E29799

International X-ray Absorption Society, Fe2O3 Data, https://xaslib.xrayabsorption.org M. Newville, Rev. Min. Geo. <u>78</u>, 33 (2014).

Precision XAS requires bright, broadband, short duration and small x-ray sources

- Multiple different implosion shells have been studied to determine the optimal target design^{*,**,†}
- Recent XAS experiments used CH shells with a vacuum fill[‡]

CH Shell

This work will focus on 9 μ m thick CH shells with an 865 μ m outer diameter and a vacuum fill

The corona and afterglow emission stages can be sizeable contributors (~25%) to the x-ray emission from an implosion

Time resolved imaging and spectroscopy measured the x-ray emission stages

Lilac simulations were used to construct models for each of the three x-ray emission stages

Models were applied to each stage and fit to the data to characterize the fraction of the signal in each stage

- An 8 parameter model was developed to characterize the fraction of the signal in each stage
- The model was verified using the hydrodynamic simulation and then fit to the data

	Corona	Core	Afterglow
Signal Fraction	$12^{+2}_{-2}\%$	76 ⁺⁷ ₋₉ %	$12^{+7}_{-6}\%$

The source broadening from each stage was calculated and used to simulate the absorption spectrum of iron

A point source spectrum was degraded using the spectral resolution corresponding to each stage[†]

The additional broadening terms prevent the ability to use XANES to determine the iron melting*

> The additional broadening terms decrease the Debye-Waller Factor^{**} by 5 – 10%

By repointing the drive beams to more symmetrically illuminate the shell, we increased the symmetry of the core stagnation

- In XAS experiments, five beams are used to drive the XAS target while the remaining beams illuminate the CH shell
- The drive beams were repointed in configuration 2 resulting in a 4x decrease in the variation of the absorbed laser intensity

An improved target illumination strategy resulted in a factor of two increase in the x-ray emission

The target illumination strategy was improved by changing the laser phase plates and repointing the target drive beams

UR

Preliminary results indicate metal layers can further increase the total x-ray emission

We have characterized the performance of CH shell implosions, a common source for x-ray absorption spectroscopy (XAS) experiments

- XAS provides the temperature, density and complex chemistry of the probed material
- Implosion core emission is an ideal x-ray source for XAS, because it is bright, broadband, short duration and small
- The corona and afterglow emission stages can account for 25% of the total x-ray emission and can impact the spectral resolution due to source size broadening
- Improved illumination strategies and inner metal layers increase x-ray emission from CH shell implosions

Future experiments are planned to characterize the spatial and temporal x-ray emission profile of the metal layered shells for XAS experimental use

Backup

An 8 parameter model was used to fit the x-ray emission and constrain the three emission stages

Corona Emission:

$$J_{corona}(t; A_1, B_1) = \frac{A_1}{\sqrt{\tau}} e^{-\frac{1}{\tau}} \text{ and } \tau = B_1 \left(\frac{p(t)}{r_{crit}(t)}\right)^{\frac{2}{3}}$$

• Core Emission:

$$J_{core}(t; A_2, \mu_2, \sigma_2) = A_2 e^{-\frac{1}{2} \left(\frac{(t-\mu_2)}{\sigma_2}\right)^2}$$

Afterglow Emission:

$$J_{afterglow}(t; A_3, v_3, t_3) = \begin{cases} 0 & t < t_3 \\ A_3 \eta_e^2 & t \ge t_3 \end{cases} \text{ and } \eta_e = \frac{1}{\left(\frac{50 + v_3(t - t_3)^2}{2}\right)^3}$$

• Total Emission:

 $J_{model} = J_{corona} + J_{core} + J_{afterglow}$

