Effects of ablation and mode coupling on the deeply nonlinear stages of the Rayleigh-Taylor instability

Luke Ceurvorst University of Rochester Laboratory for Laser Energetics 63rd Annual Meeting of the American Physical Society Division of Plasma Physics Pittsburgh, PA 8-12 November 2021

Summary

High-quality radiography was obtained of the nonlinear Rayleigh-Taylor instability (RTI) at the National Ignition Facility (NIF) to explore the role of ablation

- Previous experiments* used this platform to reach nonlinear stage of ablative RTI, but experienced unexpected behavior at late times, potentially due to perforation or other unpredicted phenomena**
- An initial experiment was recently performed to explain these discrepancies while simultaneously examining the role of ablation by doubling the target thickness, thus significantly reducing acceleration
- High-quality radiographic images were captured along three axes, the analysis of which is underway and will help resolve the discrepancies between theory, simulations, and experiments.

A second experiment is scheduled for 2022 and will explore the absolute effects of ablation velocity using Be targets.

UR IIF

^{*} C. Mailliet, et al. Physics of Plasmas 26, 082703 (2019).

^{**} L. Ceurvorst, et al. Submitted to Nature Communications.

[†] L. Ceurvorst, et al. High Energy Density Physics 37, 100851 (2020).

[‡] H. Zhang, et al. Physics of Plasmas 27, 122701 (2020).

L. Masse, S. F. Khan, D. Martinez, N. Izumi, V. Smalyuk Lawrence Livermore National Laboratory, Livermore, USA

> T. Goudal, V. Bouffetier, A. Casner Université de Bordeaux-CNRS-CEA CELIA, Talence, France

B. Canaud CEA DAM, DIF, Arpajon, France

V. Goncharov, I. Igumenshchev University of Rochester Laboratory for Laser Energetics

The ablative Rayleigh-Taylor instability is expected to reach a self-similar behavior in its nonlinear stage

Constant bubble velocity expected beyond so-called saturation limit**

• Predicted self-similar behavior in this nonlinear stage:

$$h_b = \alpha_b g t^2$$

g Acceleration

t Time

 α_b Mixing parameter

* Y. Zhou, Physics Reports 723-725, 1-160 (2017). ** S. Haan, Physical Review A 39, 5812 (1989).

Previous experiment captured face-on images

RÖCHESTER

Previous experiment captured face-on images, but saw no growth beyond saturation

UR LLE

^{*} L. Ceurvorst, et al. High Energy Density Physics 37, 100851 (2020). ** S. Haan, Physical Review A 39, 5812 (1989).

Previous experiment captured face-on images, but saw no growth beyond saturation, leading to bubble height stagnation instead of self-similarity[‡]

- * L. Ceurvorst, et al. High Energy Density Physics 37, 100851 (2020).
- ** S. Haan, Physical Review A 39, 5812 (1989).
- [†] H. Zhang, et al. Physics of Plasmas 27, 122701 (2020).
- [‡] L. Ceurvorst, et al. To be submitted to Nature Communications.

Previous experiment captured face-on images, but saw no growth beyond saturation, leading to bubble height stagnation instead of self-similarity[‡]

Why do these modes stagnate, and why is this not seen in classical RTI experiments?

- * L. Ceurvorst, et al. High Energy Density Physics 37, 100851 (2020).
- ** S. Haan, Physical Review A 39, 5812 (1989).
- [†] H. Zhang, et al. Physics of Plasmas 27, 122701 (2020).
- [‡] L. Ceurvorst, et al. To be submitted to Nature Communications.

UR LLE

New experiment designed to examine these discrepancies by doubling target thickness

- Increase target thickness to 600 μm
 - Prevents perforation
 - Reduces acceleration
 - Increases role of ablation
- Increase drive duration to 44 ns
 - Allows similar distance-traveled to be observed
- Add gated side-on radiography
 - Monitor for perforation
 - Observe any bowing effects

Thicker targets are diagnosed by three lines of radiography

Thicker targets are diagnosed by three lines of radiography, each guarded with line-of-sight shields

The same imprint beam as the previous experiment was used to create the initial surface perturbations 300 ps before main drive

Target was driven for 44 ns to displace it to similar distances as before, allowing the results to be directly compared

High-quality face-on radiographs were obtained

N211020-002

1×10⁴ 2×10⁴ 3×10⁴ 4×10⁴ 5×10⁴ 6×10⁴

Analysis has begun

Analysis has begun, and early results suggest stagnation still exists

Stagnation continues despite increased thickness!

Summary

High-quality radiography was obtained of the nonlinear Rayleigh-Taylor instability (RTI) at the National Ignition Facility (NIF) to explore the role of ablation

- Previous experiments* used this platform to reach nonlinear stage of ablative RTI, but experienced unexpected behavior at late times, potentially due to perforation or other unpredicted phenomena**
- An initial experiment was recently performed to explain these discrepancies while simultaneously examining the role of ablation by doubling the target thickness, thus significantly reducing acceleration
- High-quality radiographic images were captured along three axes, the analysis of which is underway and will help resolve the discrepancies between theory, simulations, and experiments.

A second experiment is scheduled for 2022 and will explore the absolute effects of ablation velocity using Be targets.

<u>UR</u>

^{*} C. Mailliet, et al. Physics of Plasmas 26, 082703 (2019).

^{**} L. Ceurvorst, et al. Submitted to Nature Communications.

[†] L. Ceurvorst, et al. High Energy Density Physics 37, 100851 (2020).

[‡] H. Zhang, et al. Physics of Plasmas 27, 122701 (2020).

Side-on images were obtained for late times

