Predicting Hot Electron Generation in Inertial Confinement Fusion with Particle-in-Cell Simulations

S. H. Cao Department of Mechanical Engineering and

Laboratory for Laser Energetics University of Rochester 63rd Annual Meeting of the APS Division of Plasma Physics Pittsburgh, Pennsylvania November 8-12, 2021

R. Betti, V. Gopalaswamy, H. Hu, D. Patel, C. Ren, M. Rosenberg, A. Shvydky, C. Stoeckl, H. Wen

Laboratory for Laser Energetics, University of Rochester

This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0003856, the University of Rochester, and the New York State Energy Research and Development Authority. We thank the UCLA-IST OSIRIS Consortium for the use of OSIRIS.

Hot electron generation in direct drive can be predicted by PIC simulations

1. A hot electron scaling was obtained from PIC simulations as function of laser plasma conditions in the quarter-critical region

2. Using this scaling and conditions from LILAC simulations, whole-pulse hot electron generation can be predicted

3. After taking laser smoothing effects into account, the predicted hard X-ray signals agreed with Omega warm target experiments, showing the promise of this approach

Laser plasma instabilities in the OMEGA experiments were shown to be dominated by Two-Plasmon Decay (TPD) [1]

A predictive hot-electron capability is required for direct ICF design

[1] Simon, A., et al. "On the inhomogeneous two-plasmon instability." *The Physics of fluids* 26.10 (1983): 3107-3118.
 [2] Seka, W., et al. "Nonuniformly driven two-plasmon-decay instability in direct-drive implosions." *Physical review letters* 112.14 (2014): 145001.

Previous efforts for hot electron scaling focused on dependency of η [1-3]

[1] Stoeckl, C., et al. "Multibeam effects on fast-electron generation from two-plasmon-decay instability." *Physical review letters* 90.23 (2003): 235002.

[2] Froula, D. H., et al. "Saturation of the two-plasmon decay instability in long-scale-length plasmas relevant to direct-drive inertial confinement fusion." *Physical review letters* 108.16 (2012): 165003.
 [3] Turnbull, David, et al. "Impact of spatiotemporal smoothing on the two-plasmon–decay instability." *Physics of Plasmas* 27.10 (2020): 102710.

[4] Delettrez, J., et al. "Effect of laser illumination nonuniformity on the analysis of time-resolved x-ray measurements in uv spherical transport experiments." Physical Review A 36.8 (1987): 3926.

We used 2D OSIRIS simulations* to study hot electron scaling

ROCHESTER

* Fonseca, Ricardo A., et al. "OSIRIS: A three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators." *International Conference on Computational Science*. Springer, Berlin, Heidelberg, 2002.

Smoothing by spectral dispersion (SSD) [1] induces intermittent speckles on a time scale of 3 ps

[1] Skupsky, S., et al. "Improved laser-beam uniformity using the angular dispersion of

frequency-modulated light." Journal of Applied Physics 66.8 (1989): 3456-3462.

The obtained scaling law depends on η as well as Te

Laser smoothing effects need to be considered

HXRD2 can be predicted by Thot

$$E_{hot} = F_{hot} * I_0 * 4 \pi r_{LILAC}^2$$
 $E_{hot} = HXRD2 / (-1.12 + 0.066T_{hot} + 0.0097T_{hot}^2)$
[1-2]

$$T_{hot} \sim \{0.0966 + 481L^{-0.804}Te^{0.115} (\frac{T_i}{T_e})^{0.0712} \eta^{0.674} + 64.9L^{-0.120}Te^{0.281} (\frac{T_i}{T_e})^{-0.0196} \eta^{-0.00866} \}$$

Turnbull, David, et al. "Impact of spatiotemporal smoothing on the two-plasmon–decay instability." *Physics of Plasmas* 27.10 (2020): 102710.
 Christopherson, Alison. *Effects of Charged Particle Heating on the Hydrodynamics of Intertially Confined Plasmas*. University of Rochester, 2020.

The predicted hard X-ray signals were found to agree with Omega warm target shots

Hot electron generation in direct drive can be predicted by PIC simulations

1. A hot electron scaling was obtained from PIC simulations as function of laser plasma conditions in the quarter-critical region

2. Using this scaling and conditions from LILAC simulations, whole-pulse hot electron generation can be predicted

3. After taking laser smoothing effects into account, the predicted hard X-ray signals agreed with Omega warm target experiments, showing the promise of this approach

