Understanding Origins of Observed Fusion-Yield Dependencies for Direct-Drive Implosions on OMEGA

D. Cao University of Rochester Laboratory for Laser Energetics 63st Annual Meeting of the American Physical Society Division of Plasma Physics Pittsburgh, PA 8–12 November 2021

Summary

DRACO 2D simulations were used to decompose observed fusion yield dependencies to responses of known perturbations

- A. Lees et al previously developed scaling factors to predict yield-over-clean (YOC) from 1D code predictions*
- These scalings are further understood using correlations to 2D DRACO** simulations with known perturbations
 - Degradation from imprint found to scale with R_{beam}/R_{target} in addition to hydrostability
 - Residual scalings quantify missing physics or perturbation sources needed in rad-hydro models

^{*} A. Lees *et al.*, Phys. Rev. Lett. <u>127</u>, 105001 (2021).

^{**} P. B. Radha et al., Physics of Plasmas 12, 056307 (2005)

Collaborators

R. C. Shah, C. A. Thomas, A. Lees, V. Gopalaswamy, R. Betti, D. Patel, W. Theobald, J. P. Knauer, P. B. Radha, C. Stoeckl, S. P. Regan, W. Scullin, T. J. B. Collins, and V. N. Goncharov

> University of Rochester Laboratory for Laser Energetics

$$\frac{Y_{\text{measured}}}{Y_{1-D}} \approx \text{YOC}_{\text{predicted}} = \text{YOC}_{R_{b}/R_{t}} \cdot \text{YOC}_{\text{hydro}} \cdot \text{YOC}_{\text{fuel age}} \cdot \text{YOC}_{\text{low-mode}}$$

^{*} A. Lees et al., Phys. Rev. Lett. 127, 105001 (2021).

How far can existing (multi-dimensional) physics models capture and explain these effects?

^{*} A. Lees *et al.*, Phys. Rev. Lett. <u>127</u>, 105001 (2021).

^{**} P. B. Radha et al., Physics of Plasmas 12, 056307 (2005)

Y_{exp}/Y_{code} scaling should approach unity as one adds more complexity to the code

ROCHESTER

For scaling with hydroscale factor, see Session CO04, C. Thomas et al

For scaling with hydroscale factor, see Session CO04, C. Thomas et al

* up to modes $\ell \leq 50$

Density profiles suggest imprint enhances beam port geometry perturbation (quantification ongoing)

UR

"Leftover" scalings quantify the additional physics or perturbations that should be added to rad-hydro models

Summary

DRACO 2D simulations were used to decompose observed fusion yield dependencies to responses of known perturbations

- A. Lees et al previously developed scaling factors to predict yield-over-clean (YOC) from 1D code predictions*
- These scalings are further understood using correlations to 2D DRACO** simulations with known perturbations
 - Degradation from imprint found to scale with R_{beam}/R_{target} in addition to hydrostability
 - Residual scalings quantify missing physics or perturbation sources needed in rad-hydro models

^{*} A. Lees *et al.*, Phys. Rev. Lett. <u>127</u>, 105001 (2021).

^{**} P. B. Radha et al., Physics of Plasm as 12, 056307 (2005)