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Summary

Plasma code development targeted at high-performance
heterogeneous platforms

Focused on CUDA GPU paradigm

Primary algorithms: Particle-in-Cell (PIC) and iterative Cross
Beam Energy Transfer (CBET)

Multi-GPU clusters supported, targeting multi-node
systems

Focus on large spatial-scale simulations

CBET Algorithm

* Calculating cross beam energy transfer across
expanding plasma
* Based upon stimulated Brillioun
scattering [1]
* Dependent on laser and plasma
characteristics
* Reduces ICF implosion efficiency
* Simulation
* 1-step, iterative, explicit algorithm [2]
* Ray-based modeling approach
* Distribute rays amongst threads of
computation
 Map thread groups to warps
* Minimize synchronization
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Current State

2D Code: Verified and functional
3D Code: Functional, undergoing verification
Built as a standalone program

Particle pusher on GPU
FDTD on CPU
Currently optimizing on GPU

Post-CBET Intensities (W/cm~™2)

Motivation

Algorithms applicable to wide range of plasma phenomena
* Inertial Confinement Fusion
* Magnetic Confinement Fusion
« MHD

GP SIMD Cores

CORE

Reduce simulation computation overhead, allow for more rapid simulation

and experimentation
Better leveraging available hardware in modern high-performance
computing (HPC) centers

 ORNL Summit (#2 on Top500): 6 GPUs per node [5]

 ANL Aurora (Upcoming Exascale): 6 GPUs per node [6]

* ORNL Frontier (Upcoming Exascale): 4 GPUs per node [7]
Exploiting parallel aspects of algorithms to a larger extent
Leverage multi-node computation for larger problem sizes (MPI)
Goal: Understanding best computing practices for heterogeneous code
development

Plasma density
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* Challenge

Next Steps

* Add field deposition
e Continued optimization
* Integrate into wider TriForce code

Quantify TP of various push algorithms
Identify host- and device-suited phases
Implement as multi-GPU, multi-cluster code

* Kinetic model of plasma
* Coalesce particles = “Macroparticles”
* Break computation into discrete stages:
* Field gathering, particle push, current
deposition, field solution
* Applicable to wide variety of systems (Poisson,

* Execution time dominated by particle push

* Optimize for heterogeneous architectures [3]
* Maximize data locality
* Mixed precision computation
* Minimal branching
* Minimize MPI overhead in multi-cluster systems [4]

PIC Algorithm

Heterogeneous Ray Tracing

Subroutine of CBET algorithm
Traces ray paths across plasma
Each thread assigned subset of rays
Optimized for GPU execution
* Data locality: Ray reindexing,
 Minimal Global Memory Accesses
Operational on multi-GPU nodes
* Portable across architectures (POWER
and x86)
* Distributes problem by ray
information
* No cross-talk necessary
Currently investigating:
 Data movement optimizations
 Unified Memory performance
 Optimized pipeline utilization
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Heterogeneous Particle Push
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Subroutine of kinetic algorithms

* Developed for PIC

* Focuses on EM interactions
Utilizes Boris push algorithm

1.00E+02

W\

5.00E+01

e Splits E and B momentum
contributions

1.00E+01
5.00E+00

T T

L3
35

-

0

Particle
Deposition

i |

Field Field

Gathering Update
fan [9]

Particle
Pushing

Related Work

* [1] SBS Theory

e [2] CBET Algorithm: Governing equations and
comparison to preexisting models

 [3] PIC: nGPU-CUDA Implementation: Single node, multi-
accelerator

* [4] PIC: MPI w/ AMR: Multi-cluster, adds adaptive mesh
refinement capabilities

@)

MMELIORA]

2% ROCHESTER

e “Half time steps”
Requires non-local access to field data
Data migration necessary for subsequent
PIC phases
* Motivates fully heterogeneous
code, maximize concurrency
between host and device

Execution Time (sec)
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