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Summary
• Plasma code development targeted at high-performance 

heterogeneous platforms
• Focused on CUDA GPU paradigm
• Primary algorithms: Particle-in-Cell (PIC) and iterative Cross 

Beam Energy Transfer (CBET)
• Multi-GPU clusters supported, targeting multi-node 

systems
• Focus on large spatial-scale simulations
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• Algorithms applicable to wide range of plasma phenomena
• Inertial Confinement Fusion
• Magnetic Confinement Fusion
• MHD

• Reduce simulation computation overhead, allow for more rapid simulation 
and experimentation

• Better leveraging available hardware in modern high-performance 
computing (HPC) centers

• ORNL Summit (#2 on Top500): 6 GPUs per node [5]
• ANL Aurora (Upcoming Exascale): 6 GPUs per node [6]
• ORNL Frontier (Upcoming Exascale): 4 GPUs per node [7]

• Exploiting parallel aspects of algorithms to a larger extent
• Leverage multi-node computation for larger problem sizes (MPI)
• Goal: Understanding best computing practices for heterogeneous code 

development

• Calculating cross beam energy transfer across 
expanding plasma

• Based upon stimulated Brillioun
scattering [1]

• Dependent on laser and plasma 
characteristics

• Reduces ICF implosion efficiency
• Simulation

• 1-step, iterative, explicit algorithm [2]
• Ray-based modeling approach
• Distribute rays amongst threads of 

computation
• Map thread groups to warps
• Minimize synchronization

• Kinetic model of plasma
• Coalesce particles = “Macroparticles”
• Break computation into discrete stages:

• Field gathering, particle push, current 
deposition, field solution

• Applicable to wide variety of systems (Poisson, 
Maxwell)

• Execution time dominated by particle push
• Challenge

• Optimize for heterogeneous architectures [3]
• Maximize data locality
• Mixed precision computation
• Minimal branching

• Minimize MPI overhead in multi-cluster systems [4]

Current State
• CBET

• 2D Code: Verified and functional
• 3D Code: Functional, undergoing verification
• Built as a standalone program

• PIC
• Particle pusher on GPU
• FDTD on CPU
• Currently optimizing on GPU

Next Steps
• CBET:

• Add field deposition
• Continued optimization
• Integrate into wider TriForce code

• PIC:
• Quantify TP of various push algorithms
• Identify host- and device-suited phases
• Implement as multi-GPU, multi-cluster code

• Subroutine of CBET algorithm
• Traces ray paths across plasma
• Each thread assigned subset of rays
• Optimized for GPU execution

• Data locality: Ray reindexing, 
• Minimal Global Memory Accesses

• Operational on multi-GPU nodes
• Portable across architectures (POWER 

and x86)
• Distributes problem by ray 

information
• No cross-talk necessary

• Currently investigating:
• Data movement optimizations
• Unified Memory performance
• Optimized pipeline utilization

• Subroutine of kinetic algorithms
• Developed for PIC
• Focuses on EM interactions

• Utilizes Boris push algorithm
• Splits 𝑬𝑬 and 𝑩𝑩 momentum 

contributions
• “Half time steps”

• Requires non-local access to field data
• Data migration necessary for subsequent 

PIC phases
• Motivates fully heterogeneous 

code, maximize concurrency 
between host and device
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