Understanding shock release experiments using a numerical simulation of VISAR

University of Rochester Laboratory for Laser Energetics American Physical Society Division of Plasma Physics Pittsburgh, PA 11/11/21

Summary

Synthetic VISAR can provide insight into experimental outcomes beyond the standard VISAR data analysis methods

- Forward simulations of the VISAR diagnostic provides synthetic data from simulations that can be directly compared to experimental images eliminating possible fringe shift ambiguities
- VISAR simulations can accurately reproduce phenomena such as sudden fringe jumps and blanking
- Understanding and predicting VISAR measurements is valuable to future experimental design

Simulating VISAR can help improve VISAR systems and HEDP experiments in the future

IIE

Collaborators

R. Betti, V. Gopalaswamy, A. Lees, A. Shvydky Laboratory for Laser Energetics, University of Rochester

Full wave transport* with correct dielectric properties** must be considered to model phase and intensity of the VISAR probe in the quartz witness***

- Solving the Helmholtz equation for the electric field:
 - $\Delta E_z \nabla \cdot \nabla E_z + \frac{n^2 \omega^2}{c^2} \mathbf{E}_z = \mathbf{0}$

- For T<5000K $n = 1.5 + i\alpha_0 e^{-T_0/T}$ which is a curve fit of a result from ab initio DFT using GGA⁺
 - Temperature region responsible for preheat and blanking

• For T>5000K the index is modeled successfully with a Drude model as verified through experiment**

Total phase from the wave transport is sent through the synthetic VISAR optical path using the VISAR equation and added to the initial phase pattern

- VISAR equation: $\frac{\lambda}{2}g(t) = z(t) z(t \tau) + \delta \frac{dz(t-\tau)}{dt}\tau$ where g(t) is the sthe fringe shift, τ is the etalon delay time, and δ is the etalon dispersion. Remember phase is related to z!
- The fringe shifts are then added to the reference phase and wrapped to 2π
- The amplitude from the wave transport is then applied to retrieve the signal strength

Unwrapped and 2π wrapped reference phases

ROCHESTER

Synthetic VISAR for a perfect reflector

5

Synthetic VISAR shows a region of relative blanking similar to experiment

The shock decay happens at a constant deceleration in experiment versus in stages in simulation

Understanding and predicting the blanking process enabled measurements of shock acceleration through experimental redesign

- Synthetic VISAR correctly predicted a 30% decrease in laser intensity would allow measurement of initial shock acceleration
 - 125 μm ablator 100 μm gap First design

Shock acceleration region

Shock decay region

- Implement more materials than quartz witnesses such as LiF* ** utilizing DFT calculations for material properties
- Have better discretization of the index of refraction within material layer
 - ODE solver for Helmholtz equation rather than a matrix inverse method
- Benchmark against known shock conditions and build a predictive capability between hydrocodes, synthetic VISAR, and experiments

Synthetic VISAR can provide insight into experimental outcomes beyond the standard VISAR data analysis methods

- Forward simulations of the VISAR diagnostic provides synthetic data from simulations that can be directly compared to experimental images eliminating possible fringe shift ambiguities
- VISAR simulations can accurately reproduce phenomena such as sudden fringe jumps and blanking
- Understanding and predicting VISAR measurements is valuable to future experimental design

Simulating VISAR can help improve VISAR systems and improve HEDP experiments in the future

