Understanding shock release experiments using a numerical simulation of VISAR

University of Rochester
Laboratory for Laser Energetics

63rd Annual Meeting
American Physical Society
Division of Plasma Physics
Pittsburgh, PA
11/11/21
Summary

Synthetic VISAR can provide insight into experimental outcomes beyond the standard VISAR data analysis methods

- Forward simulations of the VISAR diagnostic provides synthetic data from simulations that can be directly compared to experimental images eliminating possible fringe shift ambiguities

- VISAR simulations can accurately reproduce phenomena such as sudden fringe jumps and blanking

- Understanding and predicting VISAR measurements is valuable to future experimental design

Simulating VISAR can help improve VISAR systems and HEDP experiments in the future
R. Betti, V. Gopalaswamy, A. Lees, A. Shvydky
Laboratory for Laser Energetics, University of Rochester
Full wave transport* with correct dielectric properties** must be considered to model phase and intensity of the VISAR probe in the quartz witness***

- Solving the Helmholtz equation for the electric field:
 \[
 \Delta E_z - \nabla \cdot \nabla E_z + \frac{n^2 \omega^2}{c^2} E_z = 0
 \]

- For $T<5000K$ $n = 1.5 + i\alpha_0 e^{-T_0/T}$ which is a curve fit of a result from ab initio DFT using GGA †
 - Temperature region responsible for preheat and blanking

- For $T>5000K$ the index is modeled successfully with a Drude model as verified through experiment**

References:

** D. G. Hicks et al, PRL 97, 025502 (2006)
† S. Laffitte et al., Phys. Plasmas 21, 082705 (2014)
Total phase from the wave transport is sent through the synthetic VISAR optical path using the VISAR equation and added to the initial phase pattern

- VISAR equation: \(\frac{\lambda}{2} g(t) = z(t) - z(t - \tau) + \delta \frac{dz(t - \tau)}{dt} \tau \) where \(g(t) \) is the fringe shift, \(\tau \) is the etalon delay time, and \(\delta \) is the etalon dispersion. Remember phase is related to \(z! \)

- The fringe shifts are then added to the reference phase and wrapped to \(2\pi \)

- The amplitude from the wave transport is then applied to retrieve the signal strength

Unwrapped and \(2\pi \) wrapped reference phases

Synthetic VISAR for a perfect reflector
Synthetic VISAR shows a region of relative blanking similar to experiment.

Shock acceleration through the quartz, which gives a low intensity reflection.

125 μm ablator 100 μm gap

Shock exits the quartz

Shock decays as it travels through the quartz

The shock decay happens at a constant deceleration in experiment versus in stages in simulation.
Understanding and predicting the blanking process enabled measurements of shock acceleration through experimental redesign

- Synthetic VISAR correctly predicted a 30% decrease in laser intensity would allow measurement of initial shock acceleration

125 μm ablator 100 μm gap
First design

125 μm ablator 100 μm gap
Redesigned with synthetic VISAR
Future Work

• Implement more materials than quartz witnesses such as LiF* ** utilizing DFT calculations for material properties

• Have better discretization of the index of refraction within material layer
 – ODE solver for Helmholtz equation rather than a matrix inverse method

• Benchmark against known shock conditions and build a predictive capability between hydrocodes, synthetic VISAR, and experiments

** D. G. Hicks Phys Rev 91, 3 (2003)
Summary/Conclusions

Synthetic VISAR can provide insight into experimental outcomes beyond the standard VISAR data analysis methods

- Forward simulations of the VISAR diagnostic provides synthetic data from simulations that can be directly compared to experimental images eliminating possible fringe shift ambiguities

- VISAR simulations can accurately reproduce phenomena such as sudden fringe jumps and blanking

- Understanding and predicting VISAR measurements is valuable to future experimental design

Simulating VISAR can help improve VISAR systems and improve HEDP experiments in the future