Diagnosing Low-Mode ($\ell \leq 6$) and Mid-Mode ($6 < \ell \leq 40$) Asymmetries in the Explosion Phase of Laser-Direct-Drive DT Cryogenic Implosions on OMEGA

$t_0 + 250$ ps (explosion phase)

J. Baltazar
University of Rochester
Laboratory for Laser Energetics

63rd Annual Meeting of the American Physical Society Division of Plasma Physics
Pittsburgh, PA
8–12 November 2021
Simulations of DT cryogenic implosions indicate low- and mid-mode asymmetries can be diagnosed from gated x-ray images recorded during the explosion phase.

- Shell breakup cannot be detected in hot-spot images of DT cryogenic implosions on OMEGA.
- X-ray signatures for the shell breakup are explored in the explosion phase where the shell breakup is expected to be exaggerated.
- The timing in the implosion and the energy band of the emission are optimized to diagnose shell asymmetry measurements.

Preliminary explosion phase measurements recorded for an OMEGA DT cryogenic implosion show that it is feasible to diagnose low- and mid-mode asymmetries.
Collaborators

University of Rochester
Laboratory for Laser Energetics
Shell breakup cannot be detected in hot-spot images of DT cryogenic implosions on OMEGA.

Three-dimensional ASTER simulation showing beam mode.

Hot-spot image:

\[R_b/R_t = 0.75 \]
The x-ray signature for the corona–fuel interface is driven by the hydrodynamic structure, which is quantitatively similar during the deceleration and explosion phases.
Mid-mode asymmetries are prominent if soft x-ray gated images are obtained during the explosion phase.
Soft x-ray gated images recorded in the explosion phase reflect the density nonuniformity.
The $\ell = 10$ mode amplitude increases between the deceleration and explosion phases.

First data from a recent DT cryogenic implosion campaign on OMEGA show a modulated emission ring.

Work is now underway to establish approaches to quantify the variability of the data.
Summary/Conclusions

Simulations of DT cryogenic implosions indicate low- and mid-mode asymmetries can be diagnosed from gated x-ray images recorded during the explosion phase.

- Shell breakup cannot be detected in hot-spot images of DT cryogenic implosions on OMEGA.
- X-ray signatures for the shell breakup are explored in the explosion phase where the shell break up is expected to be exaggerated.
- The timing in the implosion and the energy band of the emission are optimized to diagnose shell asymmetry measurements.

Preliminary explosion phase measurements recorded for an OMEGA DT cryogenic implosion show that it is feasible to diagnose low- and mid-mode asymmetries.