
Introduction

Chromatic Flying Focus

In a laser-wakefi eld accelerator (LWFA), the ponderomotive force of an 
intense laser pulse propagating through a plasma excites a large-amplitude 
plasma wakefi eld that can trap and accelerate electrons [1].

Three fundamental challenges limiting LWFA performance are
• Diffraction: the laser pulse diffracts as it propagates, decreasing 

its intensity and thus its ability to drive a wake
• Depletion: the laser pulse loses energy to the wakefi eld, 

decreasing its intensity
• Dephasing: electrons (vz ~ c) outrun the accelerating phase of the 

wakefi eld and are no longer accelerated

• The original fl ying focus uses a highly chromatic diffractive focusing 
optic to focus different colors in a pulse to different axial locations in 
the far fi eld [2]

• By controlling the chirp of the input pulse, the arrival time of each color 
to its respective focus can be controlled

• However, since the pulse’s bandwidth is spread out over the focal 
region, the ultrashort pulse duration is lost
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Axiparabola and Radial Group Delay

Axiparabola and Refl ective Echelon

• An axiparabola is a refl ective 
optic that focuses light rays 
at different radial locations in 
the near fi eld to different axial 
locations in the far fi eld [3]

• By controlling the arrival time of 
each radius at the axiparabola 
with a tailored radial group delay, 
an intensity peak can be driven 
at a desired velocity

• A refl ective echelon (1) separates a pulse into concentric rings, (2) imparts 
a stepped radial group delay to the pulse to control the arrival time of each 
ring to the axiparabola, and (3) circumvents chromatic aberration inherent in 
refractive optics [4]

• Within each echelon step, the pulse front (surface coinciding with the peak 
intensity of the pulse) and phase front (surface of constant phase) are fl at

• Despite using refl ective 
optics, simulations suggest an 
increase in pulse duration in 
the far fi eld akin to chromatic 
aberration; this is shown in 
the fi gure to the right by the 
broadening of the pulse in p 

as the pulse propagates
• The dashed horizontal line 

shows a constant focal 
velocity of the intensity peak 
when the echelon is included;  
the dashed curve shows an 
increasing focal velocity of the 
intensity peak without 
the echelon
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r – radial coordinate 
z – longitudinal coordinate 

s (r) – axiparabola sag function 
f0 – focal length offset 

L – focal depth
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xinitial: ~20 fs
xfinal: ~60 fs
f0 = 20 m
f# = 5
L = 1 m
vf = c

m0: central wavelength
mmax = m0 + dm/2: maximum wavelength
mmin = m0 – dm/2: minimum wavelength
dm: pulse bandwidth
Dz: step-to-step phase difference

Dzmax < Dz0
Dzmin > Dz0
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• Far-fi eld chromatic-like aberrations 
arise because the echelon steps 
are fi xed at a depth defi ned by the 
central wavelength, therefore other 
wavelengths in the pulse no longer 
maintain the same fi xed-phase relation 
from step to step 

• Simulations suggest this quasi-
chromatic aberration is noticeable for 
long axiparabola focal lengths (~1 m) 
but insignifi cant for lengths relevant 
for dephasingless laser wakefi eld 
acceleration (~10 cm)

• A refl ective echelon can impart a stepped radial group delay to a pulse prior to its 
creation of a fl ying focus with an axiparabola

• In the DLWFA, the electron gains 1.3 GeV over 16 dephasing lengths, while in the 
traditional LWFA, the electron outruns the laser pulse and only gains a maximum of 
75 MeV energy over a single dephasing length [4]
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• This leads to longitudinal chromatism and thus pulse broadening in the far fi eld
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• Consider a single-step echelon with m0/2-deep 
steps (black lines) modeled in “transmission”

• Input rays have fl at phase fronts (colored lines)
• Immediately after refl ecting from the inner step, 

the phase fronts are still fl at
• However, since the echelon steps are fi xed at m0/2-

deep, the phase fronts of different wavelengths 
have different step-to-step phase differences
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For both cases,
m0 = 1 nm
xl = 30 fs
a0 = 0.5
n0 = 3.5 × 1018 cm–3
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Introduction

Chromatic Flying Focus

In a laser-wakefield accelerator (LWFA), the ponderomotive force of an 
intense laser pulse propagating through a plasma excites a large-amplitude 
plasma wakefield that can trap and accelerate electrons [1].

Three fundamental challenges limiting LWFA performance are
• Diffraction: the laser pulse diffracts as it propagates, decreasing 

its intensity and thus its ability to drive a wake
• Depletion: the laser pulse loses energy to the wakefield, 

decreasing its intensity
• Dephasing: electrons (vz ~ c) outrun the accelerating phase of the 

wakefield and are no longer accelerated

• The original flying focus uses a highly chromatic diffractive focusing 
optic to focus different colors in a pulse to different axial locations in 
the far field [2]

• By controlling the chirp of the input pulse, the arrival time of each color 
to its respective focus can be controlled

• However, since the pulse’s bandwidth is spread out over the focal 
region, the ultrashort pulse duration is lost
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Axiparabola and Radial Group Delay

Axiparabola and Reflective Echelon

• An axiparabola is a reflective 
optic that focuses light rays 
at different radial locations in 
the near field to different axial 
locations in the far field [3]

• By controlling the arrival time of 
each radius at the axiparabola 
with a tailored radial group delay, 
an intensity peak can be driven 
at a desired velocity

• A reflective echelon (1) separates a pulse into concentric rings, (2) imparts 
a stepped radial group delay to the pulse to control the arrival time of each 
ring to the axiparabola, and (3) circumvents chromatic aberration inherent in 
refractive optics [4]

• Within each echelon step, the pulse front (surface coinciding with the peak 
intensity of the pulse) and phase front (surface of constant phase) are flat

• Despite using reflective 
optics, simulations suggest an 
increase in pulse duration in 
the far field akin to chromatic 
aberration; this is shown in 
the figure to the right by the 
broadening of the pulse in p 

as the pulse propagates
• The dashed horizontal line 

shows a constant focal 
velocity of the intensity peak 
when the echelon is included;  
the dashed curve shows an 
increasing focal velocity of the 
intensity peak without  
the echelon
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r – radial coordinate  
z – longitudinal coordinate  

s (r) – axiparabola sag function  
f0 – focal length offset  

L – focal depth
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m0: central wavelength
mmax = m0 + dm/2: maximum wavelength
mmin = m0 – dm/2: minimum wavelength
dm: pulse bandwidth
Dz: step-to-step phase difference

Dzmax < Dz0
Dzmin > Dz0
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• Far-field chromatic-like aberrations 
arise because the echelon steps 
are fixed at a depth defined by the 
central wavelength, therefore other 
wavelengths in the pulse no longer 
maintain the same fixed-phase relation 
from step to step 

• Simulations suggest this quasi-
chromatic aberration is noticeable for 
long axiparabola focal lengths (~1 m) 
but insignificant for lengths relevant 
for dephasingless laser wakefield 
acceleration (~10 cm)

• A reflective echelon can impart a stepped radial group delay to a pulse prior to its 
creation of a flying focus with an axiparabola

• In the DLWFA, the electron gains 1.3 GeV over 16 dephasing lengths, while in the 
traditional LWFA, the electron outruns the laser pulse and only gains a maximum of 
75 MeV energy over a single dephasing length [4]
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• This leads to longitudinal chromatism and thus pulse broadening in the far field
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• Consider a single-step echelon with m0/2-deep 
steps (black lines) modeled in “transmission”

• Input rays have flat phase fronts (colored lines)
• Immediately after reflecting from the inner step,  

the phase fronts are still flat
• However, since the echelon steps are fixed at m0/2-

deep, the phase fronts of different wavelengths 
have different step-to-step phase differences
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