Kinetic Simulation Study of Magnetized Collisionless Shock Formation using OMEGA EP

ion, t = 0.126 ns 1000 3.0 2.5 500 Sec. A. S. M. average) incoming ion 2.0 v_x [km/s] 1.5 0 MTSI ∑ 1.0 °u/u -500interesting. 0.5 reflected ion ____0.0 140 -100020 40 60 80 100 120 0 x [µm]

Yu (Victor) Zhang Dept. Mechanical Engineering Laboratory for Laser Energetics University of Rochester

62nd Annual Meeting of the APS Division of Plasma Physics Nov. 9-13, 2020

Collaborators

C. Ren, J. R. Davies, P. Heuer University of Rochester

This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0003856, Department of Energy Award Number DE-SC0020431, and the resources of NERSC. The authors thank *UCLA-IST OSIRIS consortium* for the use of OSIRIS code.

Summary

2D particle-in-cell simulations showed perpendicular magnetized collisionless shocks can be formed on the OMEGA-EP / MIFEDS platform

• Modified two-stream instability (MTSI) provides the main dissipation for shock formation.

- The shocks can form within 1 ns, 100's μ m in both H and Ne, with B = 50 T on OMEGA-EP.
- Particle acceleration and non-Maxwellian distribution are observed.

High-power lasers enable study of collisionless shocks in laboratory

Magnetized collisionless shock

- Telescopes*
- In situ spacecraft missions**
- Laser experiments[†]
- Simulations[‡]

OMEGA-EP experiments

- Gas jet species: hydrogen / neon
- Gas jet density: 10¹⁸ ~ 10²⁰ cm⁻³
- Gas jet temperature: 40 ~ 400 eV
- Laser-driven piston velocity: < 500 km/s
- MIFEDS magnetic field: < 50 T

* NASA, https://apod.nasa.gov/apod/ap001017.html

- ** UCLA, http://www-ssc.igpp.ucla.edu/ssc/isee.html; Wang et al., Geophys. Res. Lett. 46, 562 (2019)
- [†] Woolsey et al., Phys. Plasmas 8, 2439 (2001); Schaeffer et al., Phys. Plasmas 19, 070702 (2012); Schaeffer et al., Phys. Plasmas 24, 041405 (2017)
- [‡] Matsukiyo *et al.*, J. Geophys. Res. **108**, 1459 (2003); Matsukiyo *et al.*, ApJ **742** 47 (2011); Park *et al.*, Phys. Plasmas **19**, 062904 (2012); Park *et al.*, ApJ **765** 147 (2013); Schaeffer *et al.*, Phys. Plasmas **27**, 042901 (2020)

RÖCHESTER

The plasma density is constrained by the collisionless and super-magneto-sonic requirements

Ion collisional mean free path*

$$\lambda_{ii} = \frac{2\pi\epsilon_0^2 m_i^2 V_p^4}{n_i Z_i^4 e^4 \ln \Lambda} \gg L \quad \to \quad n_e^{[10^{19} \text{ cm}^{-3}]} \ll \frac{131}{\ln \Lambda} \left(\frac{m_i}{m_p}\right)^2 \frac{1}{Z_i^3} \left(\frac{L_{[\mu m]}}{100}\right)^{-1} \left(\frac{V_p^{[km/s]}}{500}\right)^4$$

Super-magneto-sonic piston

$$V_{p} > \sqrt{v_{A}^{2} + c_{s}^{2}} \rightarrow n_{e} [10^{19} \text{ cm}^{-3}] > \frac{27Z_{i} \left(\frac{B_{[T]}}{50}\right)^{2}}{56 \frac{m_{i}}{m_{p}} \left(\frac{V_{p} [\text{km/s}]}{500}\right)^{2} - Z_{i} \frac{T_{e} [\text{eV}]}{50} - \frac{T_{i} [\text{eV}]}{50}}$$

UR LLE

Modified two-stream instability provides dissipation for the collisionless shocks

6

Modified two-stream instability between incoming and reflected ion

Hydrogen

 $m_i = 1836 m_e$ $n_e = 10^{19} \text{ cm}^{-3}$ T = 50 eV $V_d = 3.5 M_s = 442 \text{ km/s}$ B = 50 T $\beta = 0.16$

Neon

 $m_i = 20 \times 1836 m_e$ $Z_i = 8$ $n_e = 0.6 \times 10^{19} \text{ cm}^{-3}$ T = 160 eV $V_d = 3.5 M_s = 375 \text{ km/s}$ B = 50 T $\beta = 0.17$

A hydrogen shock forms in ~0.1 ns, traveling with a velocity over 700 km/s

Hydrogen shock

lons are reflected by self-generated *E*-field, resulting in MTSI

- An electrostatic E_x field exists at the shock front*
- ~19% of incoming ion is reflected
- lons can be reflected to $\leq 2V_{\text{shock}}^{**}$

Energetic ions can escape the shock front

- Reflected ion is also accelerated by E_z
- ~12% of the downstream ion population is accelerated to 6.5~9.7 keV

These energetic ions are potential experiment observables

The observed compression ratio is larger than that from the Rankine Hugoniot jump conditions

^{*} Tidman *et al.*, Shock Waves in Collisionless Plasmas, Wiley Interscience (1971); Gurnett *et al.*, Introduction to Plasma Physics, Cambridge University Press (2005) ** Rinderknecht *et al.*, Phys. Rev. Lett. **120**, 095001 (2018)

A neon gas jet potentially allows spectroscopy measurements

Neon shock

- $m_i = 20 \times 1836 m_e$, $Z_i = 8$
- $n_e = 0.6 \times 10^{19} \text{ cm}^{-3}$, T = 160 eV, $V_d = 3.5 M_s = 375 \text{ km/s}$, B = 50 T

Summary

2D particle-in-cell simulations showed perpendicular magnetized collisionless shocks can be formed on the OMEGA-EP / MIFEDS platform

• Modified two-stream instability (MTSI) provides the main dissipation for shock formation.

- The shocks can form within 1 ns, 100's μ m in both H and Ne, with B = 50 T on OMEGA-EP.
- Particle acceleration and non-Maxwellian distribution are observed.

