Large-Scale Molecular-Dynamics Studies on the Release of **Shocked Polystyrene Under Inertial Confinement Fusion Conditions**

Before shock breakout

"piston" Up=38 km/s

<u>Shuai Zhang</u>, Suxing Hu

University of Rochester Laboratory for Laser Energetics

Hydrogen shown with white dots

APS DPP Meeting November 11, 2020

SUMMARY

upon release of strong shock

- Streamed hydrogen generates low-density plasmas that provide a possible explanation to [‡]D. Haberberger et al, Phys. the discrepancy between recent experiments[‡] and regular hydro simulations[‡] Rev. Lett. 123, 235001 (2019)
- Accurate Hugoniot EOS is obtained (3-20% error compared to DFT) for CH shocked to 25+ Mbar (10+ times the highest previous record), which sets an benchmark for the simulations
- The microscopic physics can happen in compounds (such as plastics and DT ice/fuel) used in ICF and HED experiments, but is currently missing in single-fluid hydro simulations

Ref: S. Zhang & S. X. Hu, *Phys. Rev. Lett.* **125**, 105001 (2020)

Shock release poses grand challenges to hydro simulations

- move far ahead of what regular hydro predicts
- the rear surface of CH before shock arrival (ref: following talk by A. Shvydky)

D. Haberberger et al, Phys. Rev. Lett. 123, 235001 (2019)

Recent experiments shows low-density plasmas generated by shock released CH

Agreement is reached when assuming pre-expansion (due to radiation preheat) at

Q: any other explanation on the inconsistency between expt and regular hydro?

We use classical molecular dynamics to simulate CH shock release

- We prepare a structure that resembles real CH samples
- A momentum-mirror technique to simulate piston

X

Up=38 km/s (corresponding Us~50 km/s, similar to the experiment[‡])

JR

[‡]D. Haberberger et al, Phys. Rev. Lett. 123, 235001 (2019)

- 1.35×10⁶ atom cell
- ρ_0 : 1.05 g/cm³
- LAMMPS
- AIREBO-M, dt=0.05 fs
- periodic(x,y)/open(+z) boundaries

We monitor the shock propagation

- Hot spot formation when shock front passes the voids
- Higher-velocity particles \Box Nonuniformity of the shock front

LLE

We calculate the Hugoniot EOS to set a benchmark for the simulations

- Shock front position vs time rightarrow Shock velocity U_s
- Kinetic + virial contribution Pressure
- Kinetic + ionization/energy partition

X

Up=38 km/s05 g/cm³

velocity
$$U_s = dz/dt$$

e $P = P_{kin} + P_{virial} = \frac{Nk_BT}{V} + \frac{\langle W \rangle}{3V}$
 \Rightarrow Temperature $T_{ei} = \frac{T}{1 + \langle Z \rangle}, \quad T = \sum_i \frac{m_i v_i^2}{3Nk_B}$

"Piston"

We calculate the Hugoniot EOS to set a benchmark for the simulations

- Shock front position vs time rightarrow Shock velocity U_s
- \blacktriangleright Kinetic + virial contribution \Box Pressure
- Kinetic + ionization/energy partition

Overall differences (relative to DFT-MD): 3-20%

X

DFT	52.5	3.8	2096	1.49
CMD	58.0	3.0	2022	1.54
	± 1.2	± 0.42	± 222	± 0.36

* According to a DFT-based average-atom model for ionization[‡], $\langle Z \rangle = 1.45$ at this temperature and density. [‡]S. X. Hu et al., Phys. Plasmas 23, 042704 (2016).

Up=38 km/s 05 g/cm^3

velocity
$$U_s = dz/dt$$

e $P = P_{kin} + P_{virial} = \frac{Nk_BT}{V} + \frac{\langle W \rangle}{3V}$
Temperature $T_{ei} = \frac{T}{1 + \langle Z \rangle}, \quad T = \sum_i \frac{m_i v_i^2}{3Nk_B}$

"Piston"

We observe species separation and hydrogen streaming upon shock breakout

- Atom velocities dramatically increase upon shock breakout
- A significant amount of hydrogen stream ahead of carbon

- Dissociation when being shocked
- Conservation of momentum and energy upon shock breakout
- Velocity distribution of H is broader than C
- Particle thermal energy and kinetics exceeds the dragging force due to chemical bonding

pon shock breakout m ahead of carbon

Faster hydrogen streams ahead of carbon after shock release

Hydrogen atoms travel far ahead of carbon, more so at lower densities

Faster hydrogen streams ahead of carbon after shock release

Hydrogen atoms travel far ahead of carbon, more so at lower densities

Faster hydrogen streams ahead of carbon after shock release

- Hydrogen atoms travel far ahead of carbon, more so at lower densities
- Motion of both species is linear
- Hydrogen travels much faster than carbon, more so at the lower density

Still two challenges to be tackled before comparing calculation to expt.

[‡]D. Haberberger Lett. 123, 235001

We tackle Challenge#0 by ionization considerations

assuming <Z>=1

- Released plasmas remain hot (T>10⁴–3×10⁴ K) until after 10 ps and may not sufficiently recombine to reach equilibrium*
- <Z>~0.5 according to DFT-based average-atom calculations for C and H plasmas at 2×10⁴ K and 10¹⁹–10²⁰ cm⁻³

- How to compare atomic velocities to plasma velocities?
- Comparing atomic velocities to plasma (electron) velocities is effectively

- Therefore, we consider the range of <Z>=0.5 to 1
- * According to collisional-radiative models[‡], it can take several ns for shock generated C and H plasmas ($\langle Z \rangle = 1.45$) at 10²⁰ cm⁻³ density and 2 eV temperature to recombine and reach $\langle Z \rangle = 1$
 - [‡]J. J. MacFarlane, NLTERT–A Collisional-Radiative Code for Computing the Radiative Properties of Non-LTE Plasmas (Fusion Technology Institute, University of Wisconsin-Madison, 1997). p. 99.

We tackle Challenge#1 by hydrodynamic scaling

- **Challenge#0** How to compare atomic velocities to plasma velocities?
- Challenge#1Sample size is smaller and the simulation time is shorterby orders of magnitude in CMD than in experiment!
 - Solution#0 Consider the range of $\langle Z \rangle = 0.5$ to 1
- Two CMD simulations are performed with the same U_p and ρ_0 but different cell sizes
- Atomic distribution profiles agree very well with each other by choosing sample thickness z₀ as the length scale and shock propagation duration t₀ as the time scale

We tackle Challenge#1 by hydrodynamic scaling

Hydrogen streaming explains experimental observations

Remarkable agreement between our calculation and experiment in both plasma velocities and scale length

[‡]D. Haberberger et al, Phys. Rev. Lett. 123, 235001 (2019)

SUMMARY

upon release of strong shock

- Streamed hydrogen generates low-density plasmas that provide a possible explanation to [‡]D. Haberberger et al, Phys. the discrepancy between recent experiments[‡] and regular hydro simulations[‡] Rev. Lett. 123, 235001 (2019)
- Accurate Hugoniot EOS is obtained (3-20% error compared to DFT) for CH shocked to 25+ Mbar (10+ times the highest previous record), which sets an benchmark for the simulations
- The microscopic physics can happen in compounds (such as plastics and DT ice/fuel) used in ICF and HED experiments, but is currently missing in single-fluid hydro simulations

Ref: S. Zhang & S. X. Hu, *Phys. Rev. Lett.* **125**, 105001 (2020)

ACKNOWLEDGEMENT

Administration under Award Number DE-NA0003856.

Large-scale non-equilibrium MD simulations of CH show species separation and hydrogen streaming

Thank you!

- D. Haberberger, A. Shvydky, D. Harding, J. Carroll-Nellenback, V. Goncharov, A. Maximov, and V. Karasiev
- *This material is based upon work supported by the Department of Energy National Nuclear Security

CH: an important material for HEDP and ICF experiments

- CH is widely used as an ablator material
- Its EOS and properties under shock well studied

Chem. Phys. (2018); Hu et al., Phys. Rev. E (2015); Ozaki et al., Phys. Plasmas (2009); Barrios et al., Phys. Plasmas (2010); Cauble et al., Phys. Plasmas (1997); Phys. Rev. Lett. (1998); Döppner et al., Phys. Rev. Lett. (2018); Kritcher et al., Nature (2020)

CMD approximates inter-atomic interactions with empirical force fields

- For CH, reactive potentials were shown to be more accurate than non-reactive ones
- Highest pressure records: 200 GPa w/ ReaxFF, 40 GPa w/AIREBO-M
- 10-30% difference at up to 40-80 GPa, in comparison to DFT predicted Hugoniots

Reactive empirical bond-order potentials for applications to hydrocarbons

We mainly use AIREBO-M, but have tested some others

O'Connor et al., J. Chem. Phys. 142, 024903 (2015)

$$E = \frac{1}{2} \sum_{i} \sum_{j \neq i} \left[E_{ij}^{\text{REBO}} + E_{ij}^{\text{LJ}} + \sum_{k \neq i,j} \sum_{l \neq i,j,k} E_{kijl}^{\text{tors}} \right]$$

covalent bonding
$$E_{ij}^{\text{REBO}} = V_{ij}^{R} \left(r_{ij} \right) + b_{ij} V_{ij}^{A} \left(r_{ij} \right)$$

Lennard-Jones
(inter-molecular)
$$E_{ij}^{\text{LJ}} = S \left(t_{r} \left(r_{ij} \right) \right) S \left(t_{b} \left(b_{ij}^{*} \right) \right) C_{ij} V_{ij}^{\text{LJ}} \left(r_{ij} \right)$$

+
$$\left[1 - S \left(t_{r} \left(r_{ij} \right) \right) \right] C_{ij} V_{ij}^{\text{LJ}} \left(r_{ij} \right)$$

torsion interactions
$$E_{ij}^{\text{tors}} = \frac{1}{2} \sum_{i} \sum_{j \neq i} \sum_{k \neq i,j} \sum_{l \neq i,j,k} w_{ij} \left(r_{ij} \right) w_{jk} \left(r_{jk} \right) w_{kl} \left(r_{kl} \right)$$

$$U_{ij}^{\text{LJ}}(r) = 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r} \right)^{12} - \left(\frac{\sigma_{ij}}{r} \right)^6 \right]$$

Replace LJ with a
Morse potential

$$U_{ij}(r) = -\epsilon_{ij} \left[1 - \left(1 - e^{-\alpha_{ij}\left(r - r_{ij}^{eq}\right)} \right)^2 \right]$$

S. J. Stuart et al., J. Chem. Phys. 112, 6472 (2000)

O'Connor et al., J. Chem. Phys. 142, 024903 (2015)

We calculate the Hugoniot EOS to set a benchmark for the simulations

- Shock front position vs time rightarrow Shock velocity U_s
- Kinetic + virial contribution Pressure
- Kinetic + ionization/energy partition

X

19

Up=38 km/s05 g/cm³

velocity
$$U_s = dz/dt$$

e $P = P_{kin} + P_{virial} = \frac{Nk_BT}{V} + \frac{\langle W \rangle}{3V}$
 \Rightarrow Temperature $T_{ei} = \frac{T}{1 + \langle Z \rangle}, \quad T = \sum_i \frac{m_i v_i^2}{3Nk_B}$

"Piston"

We calculate the Hugoniot EOS to set a benchmark for the simulations

- Shock front position vs time rightarrow Shock velocity $U_s = dz/dt$
- Kinetic + virial contribution rightarrow Pressure $P = P_{kin} + P_{virial} = \frac{Nk_BT}{V} + \frac{\langle W \rangle}{3V}$

Up=38 km/s ρ_0 : 1.05 g/cm³ Kinetic <u>+ ionization/energy partition</u> rightarrow Temperature $T_{ei} = \frac{T}{1 + \langle Z \rangle}, T = \sum_{i=1}^{\infty} \frac{m_i v_i^2}{3Nk_B}$

Hugoniot EOS from CMD agrees with DFT-MD to within 3%-20%

- Results are similar from calculations of samples with different density, structure, shock direction, and sizes and simulations with different time steps
- Results are overall similar when using AIREBO or REBO2 potentials

	$u_{ m p}$	$u_{ m s}$	ho	T	P		
	$(\rm km/s)$	$(\rm km/s)$	$({ m g/cm^3})$	$(\times 10^5 \text{ K})$	(GPa)		
$ ho_0=0.77~{ m g/cm^3}$							
DFT	38	51.4	2.96	1.470	1503	Overall differences (relative	
$\mathrm{CMD}^{\mathrm{a}}$	38	54.1 ± 0.20	2.57 ± 0.03	1.36 ± 0.01	1633 ± 18	Overall differences (relative	
						to DFT-MD):	
$ ho_0 = 1.29 \text{ g/cm}^3$						1/0/ the above least	
DFT	38	53.2	4.50	1.483	2602	~14% IN SNOCK VEIOCITY	
$\mathrm{CMD}^{\mathrm{b}}$	38	58.2 ± 0.15	3.69 ± 0.03	1.19 ± 0.03	2878 ± 20	12%_20% in density	
$\mathrm{CMD^{c}}$	38	58.4 ± 0.15	3.71 ± 0.04	1.19 ± 0.02	2876 ± 24	7%–20% in temperature	
$\mathrm{CMD}^{\mathrm{d}}$	38	56.5 ± 0.78	3.80 ± 0.15	1.27 ± 0.07	2855 ± 35		
$\mathrm{CMD}^{\mathrm{e}}$	38	56.4 ± 0.20	3.78 ± 0.16	1.30 ± 0.09	2796 ± 55	3% 10% in prossure	
. 9						J /o- I U /o III pressure	
$ ho_0 = 1.31 \text{ g/cm}^3$							
DFT	38	53.3	4.56	1.484	2651		
$\mathrm{CMD}^{\mathrm{f}}$	38	58.3 ± 0.03	3.75 ± 0.03	1.19 ± 0.02	2928 ± 24		
$\mathrm{CMD}^{\mathrm{g}}$	38	58.1 ± 0.16	3.81 ± 0.02	1.18 ± 0.02	2904 ± 48	^a Amorphous polystyrene (PS), 1.35 million atoms	
$\mathrm{CMD}^{\mathrm{h}}$	38	57.2 ± 0.00	3.86 ± 0.13	1.19 ± 0.01	2882 ± 45	^b Syndiotactic (Synd.) PS. 1.47 million atoms. Shock \perp chain.	
						^c Synd. PS. 3.69 million atoms. Shock chain.	
$ ho_0{=}1.05~{ m g/cm^3}$						^d Synd. PS. 61.44 thousand atoms. Shock chain.	
DFT	38	52.5	3.80	1.492	2096	^e Synd. PS. 61.44 thousand atoms. Shock $\stackrel{''}{\perp}$ chain.	
$\mathrm{CMD}^{\mathrm{i}}$	38	58.0 ± 1.2	3.02 ± 0.42	1.54 ± 0.36	2022 ± 222	^f Isotactic (Isot.) PS. 1.73 million atoms. Shock \parallel chain.	
$\mathrm{CMD}^{\mathrm{j}}$	38	57.0 ± 0.7	3.04 ± 0.38	1.51 ± 0.43	2290 ± 324	^g Isot. PS. 4.15 million atoms. Shock \perp chain.	
$\mathrm{CMD}^{\mathbf{k}}$	38	57.9 ± 1.4	3.03 ± 0.42	1.51 ± 0.36	2222 ± 246	^h Isot. PS. 86.4 thousand atoms. Shock \perp chain.	
$\rm CMD\text{-}REBO2^{i}$	38	57.7 ± 1.1	2.99 ± 0.35	1.32 ± 0.12	2050 ± 360	¹ Synd. PS with voids. 1.35 million atoms. Shock \parallel chain.	
CMD-AIREBO ⁱ	38	59.2 ± 1.8	3.28 ± 0.48	1.37 ± 0.18	2300 ± 202	J Synd. PS with voids. 2.70 million atoms. Shock chain.	
						= Synd. FS with volds. 1.55 million atoms. Snock chain. 1 lme	

Atomic distribution and density profiles around shock breakout

- Three-stage feature before shock breakout (at 1.1 ps)
- Less hydrogen than carbon next to the piston
- More hydrogen than carbon at the shock front (more so at the void), and in released CH after shock breakout
- 40000 atoms 30000 **Number of** 20000 10000 40000 atoms 30000 mber of 20000 10000 Nu 40000 atoms 30000 Ō 20000 Numb 10000

0

Velocity distributions of carbon in comparison to hydrogen

- Before shock breakout, both C and H follow the Maxwell-Boltzmann distribution (broadness characterized by $m/2k_{\rm B}T$, centered at Up)
- H profiles broader than C
- Peak velocity increases after shock breakout
- Distribution stabilizes to non-Maxwell after 2 ps

-km/s bin)	150,00
f atoms (per 1	100,00
Number o	50,00

Sensitivity of scale length to range of exponential fitting

Temperature and velocity profiles of released CH

Hydrogen streaming disappears under weak shock (<5.9 Mbar)

Heavier hydrogen isotope shows weaker streaming upon shock release

