Impact of Low-Mode Areal-Density Asymmetry on the Loss of Confinement for Igniting Capsules

University of Rochester Laboratory for Laser Energetics 62nd Annual Meeting of the **American Physical Society Division of Plasma Physics** Virtual Meeting 9 - 13 November 2020

UR 🚽

Summary

The impact of areal-density (ρR) asymmetries on the loss of confinement and on the ignition criterion is shown to be interpreted by the harmonic-mean definition of areal densities

- An analytic hot-spot model is generalized to 3-D to include the effects of low modes
- The 3-D ignition threshold is derived including the areal-density modulation from low modes
- The average areal-density degradation can be quantified using the measured ion-temperature asymmetries

R. Betti Laboratory for Laser Energetics, University of Rochester

Acknowledgement

P.B. Radha Laboratory for Laser Energetics, University of Rochester

The 3-D hot-spot energy equation is the basis of the ignition model*

* R. Betti *et al.*, J. Phys. <u>717</u>, 012007 (2016). ** K. M. Woo *et al.*, Phys. Plasma <u>25</u>, 052704 (2018).

The second-time derivative* of the hot-spot volume at stagnation determines the 3-D confinement time

ROCHESTER

General solution of hot-spot
energy equation starting from the
time of stagnation
$$t_s$$
 (labeled as
subscript "s") $\frac{1}{P(t)} = V(t)^{\gamma} \left[\frac{1}{P_s V_s^{\gamma}} - \frac{1}{S_{\alpha}} \int_{t_s}^t \frac{dt'}{V^{\gamma}} \right]$ $S_{\alpha} \equiv \frac{24T_i^2}{\langle \sigma v \rangle_{\rm DT} E_{\alpha}^{3.5MeV}} \sim \text{constant}$ The bracket vanishes when the
hot spot ignites with an explosive
pressure $P \to \infty$ (ignition) $\frac{1}{P_s} = \frac{1}{S_{\alpha}} \int_{t_s}^t \left(\frac{V_s}{V} \right)^{\gamma} dt'$ Expand near
stagnation: $V \approx V_s + \frac{1}{2} \ddot{V}_s (t - t_s)^2$ Lawson criteria: $\frac{P_s \tau_c}{S_{\alpha}} = 1$, where $\tau_c = \sqrt{V_s/\ddot{V}_s}$

 S_{α} is the minimum $P\tau$ required for ignition.

* Consistent with P.T. Springer et al., Nucl. Fusion <u>59</u>, 032009 (2018).

The confinement times depends on the harmonic-mean of the areal density

ROCHESTER

The generalized 3-D ignition metric for low modes includes the neutron yield, the hot-spot surface area, and the harmonic mean of the areal density

The arithmetic mean of the areal density enters through the hot-spot surface area

The 3-D ignition criterion for low modes depends on both the harmonic and the arithmetic mean of the areal density.

The "thin spots" in the shell dominate the loss of confinement as reflected in the harmonic mean of the areal density

In general agreement with O. A. Hurricane et al., *Nat. Phys.* <u>12</u>, 800–806 (2016); *DEC3D*: K. M. Woo *et al.*, Phys. Plasma, <u>25</u>, 052704 (2018), *IRIS3D*: F. Weilacher *et el.*, Phys. Plasma, <u>25</u>, 042704 (2018).

In implosions degraded by $\ell = 1$ modes, the harmonic and arithmetic mean areal densities are related to the T_i asymmetries, enabling the inference of their 1-D values

The average areal density degradation from $\ell = 1$ mode can be quantified using measured T_i asymmetries.

K. M. Woo *et al.*, Phys. Plasma, <u>25</u>, 052704 (2018). R. Betti *et el.*, BO09.00011, this conference.

The impact of areal-density (ρR) asymmetries on the loss of confinement and on the ignition criterion is shown to be interpreted by the harmonic-mean definition of areal densities

- An analytic hot-spot model is generalized to 3-D to include the effects of low modes
- The 3-D ignition threshold is derived including the areal-density modulation from low modes
- The average areal-density degradation can be quantified using the measured ion-temperature asymmetries

