Optimization of a Short-Pulse–Driven Si He_{α} **Soft X-Ray Backlighter**

C. Stoeckl University of Rochester Laboratory for Laser Energetics 62nd Annual Meeting of the American Physical Society Division of Plasmas Physics 9–13 November 2020

The brightness of a short-pulse–driven Si He_{α} backlighter was increased by ~5×

- High backlighter brightness is important to maximize signal-to-noise and signal-to-background in radiography experiments like backlighting cryogenic implosions*
- Low-density SiO₂ foam targets, the effects of a laser prepulse, and Si targets with a CH "shield" were compared to solid-density flat Si targets irradiated by a 1 kJ, ~10 to 20 ps IR laser
- The CH shield targets showed the best performance with an \sim 5× improvement in time-integrated emission and an x-ray pulse duration of ~25 ps
 - the conversion efficiency from laser light into Si He photons is of the order of $\sim 10^{-5}$

The higher backlighter brightness makes it possible to radiograph the cryogenic implosion closer to peak compression or at higher implosion velocity.

Collaborators

M. J. Bonino, C. Mileham, S. P. Regan, and W. Theobald

University of Rochester Laboratory for Laser Energetics

T. Ebert and S. Sander

Technical University of Darmstadt, Germany

A shaped crystal imager (SCI) setup is used for backlighting cryogenic implosions

- The backlighter target is not in the focus of the SCI imager, which makes it insensitive to the laser focal-spot distribution
- With a direct line-of-sight (LOS) block and a collimator, the SCI system is well shielded against the self-emission of the target

The signals from flat targets were compared with foam targets, flat targets with a laser prepulse, and targets with a thin $(10-\mu m)$ CH shield

The time-integrated spectra show little gain for the foam targets

ROCHESTER

The time-integrated spectra show a significant increase in signal for targets with a UV prepulse and targets with a shield

The time-resolved measurements showed a large increase in x-ray pulse duration for the prepulses

- Three different filters were placed in front of an ultrafast x-ray streak camera
 - Aluminum (top)
 - Chlorine-doped CH (middle)
 - CH (bottom)

Time-gated measurements with an SCI setup and a 40-ps exposure time showed the expected \sim 5× increase in signal

the spatial resolution of the image

The laser pulse duration and focal spot size were varied to find the optimum illumination setup

- The different configurations used the following laser parameters
 - 1. 10-ps pulse, 200-m² focus
 - 2. 10-ps pulse, 300-m² focus
 - 3. 20-ps pulse, 200-m² focus
 - 4. 20-ps pulse, 300-m² focus

E29094

The brightness of a short-pulse–driven Si He_{α} backlighterwas increased by ~5×

- High backlighter brightness is important to maximize signal-to-noise and signal-to-background in radiography experiments like backlighting cryogenic implosions*
- Low-density SiO₂ foam targets, the effects of a laser prepulse, and Si targets with a CH "shield" were compared to solid-density flat Si targets irradiated by a 1 kJ, ~10 to 20 ps IR laser
- The CH shield targets showed the best performance with an $\sim 5 \times$ improvement in timeintegrated emission and an x-ray pulse duration of ~ 25 ps
 - the conversion efficiency from laser light into Si He photons is of the order of $\sim 10^{-5}$

The higher backlighter brightness makes it possible to radiograph the cryogenic implosion closer to peak compression or at higher implosion velocity.

