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Summary

We observe doubly shocked states in polystyrene (CH) up to pressures of ~8 Mbar and
temperatures of 3 eV

• Double shocks allow us to explore off-Hugoniot states of materials pertinent to planetary and ICF 

physics

• Our doubly shocked CH data shows cooler, less dense, and less reflective states than those on 

the principal Hugoniot for similar pressures

• Using a Drude Model we infer that the reduced reflectivity is a result of the lower ionization in the 

cooler and denser double-shock states and compare these data to similar experiments on CH
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ICF: Inertial Confinement Fusion

Motivation

Double Shock Compression allows us to probe states off a material’s Principal Hugoniot

• Recent studies have observed diamond formation in doubly shocked polystyrene, an important result for 
the study of ice giant interiors

• This result has important implications for ICF  where it is thought that formation of diamond in CH ablators 
lends itself to RT instability growth



5

• A 532-nm laser probes reflecting shocks 
and surfaces

• Temperature data are obtained by SOP
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VISAR: velocity interferometer system for any 
reflector  SOP: streaked optical pyrometer

Technique

VISAR traces the motion of reflective surfaces while SOP records shock self-emission  
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VISAR is able to detect the single, double, and coalesced shocks in our experiment
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Time (ns)

Shock velocity and reflectivity are obtained from VISAR

Data & Analysis

Double Shock State

Coalesced Shock 
State
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Shock velocity and reflectivity are obtained from VISAR

Data & Analysis

Double Shock State
Double shock state shows significant drop 
in reflectance

Coalesced Shock 
State

Time (ns)
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Coalesced Shock 
State

Double Shock State

We use SOP to infer temperature

Data & Analysis



10

Results

We observe double shocked states with densities of ~4.0 g/cc up to ~4.7 g/cc

• We use published EOS to obtain single-
shock state1

• To obtain the pressure and density of the 
double shocked states we use a self 
impedance matching2

2Guargaglini et al.  2019

1Barrios et al. 2010 
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Results

• We use published EOS to obtain single-
shock state1

• Use self impedance matching2 to obtain 
pressure and density of double shock state

2Guargaglini et al.  2019

1Barrios et al. 2010 

We observe double shocked states with densities of 4.0 g/cc up to 4.7 g/cc

1st Shock 
State 
Rayleigh Line
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Results

• We use published EOS to obtain single-
shock state1

• Use self impedance matching2 to obtain 
pressure and density of double shock state

2Guargaglini et al.  2019

1Barrios et al. 2010 

We observe double shocked states with densities of 4.0 g/cc up to 4.7 g/cc

2nd Shock State Rayleigh Line
1st Shock 
State 
Rayleigh Line
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Results

• We use published EOS to obtain single-
shock state1

• Use self impedance matching2 to obtain 
pressure and density of double shock state

2Guargaglini et al.  2019

1Barrios et al. 2010 

We observe double shocked states with densities of 4.0 g/cc up to 4.7 g/cc

Coalescence

2nd Shock State Rayleigh Line
1st Shock 
State 
Rayleigh Line
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Results

• We use published EOS to obtain temperatures of 
single-shock state1

1Barrios et al. 2010 

We observe temperatures around 3 eV for the double shocked states and 4 eV for coalesced 
states
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Results

Reflectivity of states on Principal Hugoniot saturates at ~40% while for double shocked states we 
observe reflectivity at ~30%

• Double shock reflectivity is significantly lower that 
that of single shock CH 
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Results

• We assume a fully dissociated CH throughout the 
shock, 𝑹 = 𝒇 𝒏𝒆 , 𝒏𝒆 = 𝒁 ∗ 𝒏𝒊

• The inferred ionization 𝑍 ≡ #!
#"

was: 
~0.3 e-/scatterer for  coalesced shocks
~0.05 e-/scatterer for double shocks

Using a Drude Model we infer the ionization Z in our singly shocked and double shocked 
states 
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Summary/Conclusions

We observe doubly shocked states in polystyrene (CH) at pressures of ~8 Mbar and
temperatures of 3 eV

• Double shocks allow us to explore off-Hugoniot states of materials pertinent to planetary and ICF 

physics

• Our doubly shocked CH data shows cooler, less dense, and less reflective states than those on 

the principal Hugoniot

• Using a Drude Model we infer that the reduced reflectivity is a result of the lower ionization in the 

cooler and denser double-shock states and compare these data to similar experiments in the 

literature
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Summary/Conclusions
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Schematic picture of the shocked 
target for:

t1 < t < t2 (b1)
t2 < t < t3 (b2) 
t3 < t < t4 (b3)

Guarguaglini Self-Impedance Match

Observables

BACKUP SLIDE
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Guarguaglini Self-Impedance Match

-Self-impedance mismatch analysis in the
(Up, P) plane for the determination of the
double-shocked state
-States 3i and 3o have the same pressure
and material velocity

BACKUP SLIDE
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Guarguaglini Self-Impedance Match

𝑃(𝑈!) = 𝜌"𝑈#$𝑈!

𝑃 𝑈! = 𝑃% + 𝜌%(𝑈#& −𝑈!%)(𝑈! −𝑈!%)

Rayleigh Line for State 2

Rayleigh Line for Coalescence

-To model the transition from state 2 to state 3i, 
the adiabatic release path must be followed 
starting from 3o (the Hugoniot state 
corresponding to 3i in pressure and material 
velocity).

-If the adiabatic release line of the material 
crossing state 3o is not known, a suitable 
approximation consists in taking the mirror 
reflection of the principal Hugoniot with 
respect to the line Up = U3o

BACKUP SLIDE

Coalescence



22

Data (s55708)

BACKUP SLIDE
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Preliminary Data

up1 =   3.4 km/s
vs2 = 27.2 km/s
vs3 = 29.6 km/s

up1 = 2.06 km/s
vs2 = 27.5 km/s
vs3 = 31.8 km/s

up1 =   2.6 km/s
vs2 = 24.9 km/s
vs3 = 30.1 km/s

P2 =   7.71 MBar
P3o = 6.47 MBar

P2 = 8.87 MBar
P3o = 7.53 MBar

P2 =   8.98 MBar
P3o = 6.71 MBar

BACKUP SLIDE
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Semiclassical Drude Model

Using the Drude Model, we can express the dc 
conductivity as a function of ne, the carrier 
density, as follows:  

𝜎! = 𝑛"𝑒# 𝜏"/𝑚"

The complex conductivity is given below:

𝜎(𝜔) =
𝜎!

(1 − 𝑖𝜔𝑡)
Assuming that the shock fronts can be taken 
as Fresnel reflectors, i.e. 

𝑹(𝒏𝒆) =
𝒏𝟎 − -𝒏 (𝝎)
𝒏𝟎 + -𝒏 (𝝎)

𝟐
𝜔!(𝑛")# =

𝑛"𝑒#

𝑚"𝜀$
𝜏" =

%!
&"
(Ioffe-Regel	limit)

Taking advantage of the following equivalence, the 
ionization Z, (and equivalently the electron density ne =
Zni ), can be obtained self-consistently by fitting the 
reflectivity and subsequently the dc conductivity:

𝑛(𝜔)# = 𝜀$ −
%& &' (

%(
1 + '

())

*+
= 1 + 𝑖 𝜎(𝜔)/𝜀!𝜔

The parameter Z is varied until model R(532) matches 
observed reflectivity

BACKUP SLIDE
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• The observed reflectivity of the double shocked 
states fall significantly below the saturated 
reflectivity of ~40% observed in the literature

• This, coupled with the lower density and cooler 
temperatures observed, give insight into the 
interesting carbon/hydrogen chemistry in these 
regimes

BACKUP SLIDE
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