Shock-Release Experiments on OMEGA EP

A. Shvydky
University of Rochester
Laboratory for Laser Energetics

62nd Annual Meeting of
the American Physical Society
Division of Plasma Physics
9–13 November 2020
Radiation transport strongly affects the expansion of the rarefaction wave formed by the shock released from the laser-driven CH foil

- Experiments using VISAR* showed early expansion (before the shock release) of the back surface of the CH foil.
- The buried Au layer reduced the extent and scale length of the density profile in the rarefaction wave, consistent with radiation preheat hypothesis.
- The Al layer on the laser side of the target did not affect the release, which ruled out the laser shinethrough as the early expansion mechanism.

VISAR: velocity interferometer system for any reflector
Collaborators

University of Rochester
Laboratory for Laser Energetics

M. D. Rosen and V. A. Smalyuk
Lawrence Livermore National Laboratory
The shock-release experiments used a 4ω probe to measure the low-density plasma profile and side-on x-ray radiography to measure the shell trajectory.

- 37 μm CH
- 4.1-mm-diam spherical cap or flat
- 5-ns square pulse
- 3×10^{14} W/cm2
The experimentally measured extent and scale length of the electron density profiles in the rarefaction wave are significantly longer than those predicted by standard radiation-hydrodynamics simulations.

The reasons for the difference:

- The way we infer the electron density using a textbook plasma index of refraction is wrong.
- Some physics is missing from or incorrect in the simulations.
Using a more-accurate index of refraction from *ab-initio* calculations* does not significantly change the electron density profiles obtained from 4ω probe images

$$\rho = 0.001 \text{ g/cm}^3, n_e \approx 10^{20} \text{ cm}^{-3}$$

![Graph showing electron density profiles](image)

Equations:

$$n_{DFT} = \sqrt{1 + 4\pi (0.001 \text{ g/cm}^3 n_i + 4.9 \text{ Å}^3 n_e)} - \text{ DFT } ab\text{-initio} \text{ calculations}$$

$$n_p = \sqrt{1 - 4\pi 4.9 \text{ Å}^3 n_e} - \text{ plasma dielectric constant } n_p = \sqrt{1 - n_e/n_c}$$

* A. Shvydky, A. V. Maximov, V. V. Karasiev, D. Haberberger, and V. N. Goncharov, “Ionization State and Dielectric Permittivity in Cold Rarefied CH Plasmas of Inertial Confinement Fusion,” to be submitted to Physical Review E.
The density profile on the back side of the shell before the shock breakout strongly affects the rarefaction wave expansion.

\[n_e = 10^{19} \text{ cm}^{-3} \]
\[n_e = 10^{20} \text{ cm}^{-3} \]

Shell

\[\text{Distance (\(\mu \text{m} \))} \]

\[\text{Time (ns)} \]

\[\rho (\text{g/cm}^3) \]

\[\text{Laser} \]

VISAR shows movement of the back side of the CH foil before the shock breakout.

Coronal x-ray preheat or laser shinethrough?

*ASBO: active shock breakout
The latest experiments were aimed at testing x-ray preheat as well as shinethrough as the culprit for pre-expansion of the rear side of the target.
The buried Au layer significantly affects the position of the rarefaction wave.
The early expansion and therefore the release strongly depend on the radiation transport models used in the simulations.

- Multi-group diffusion (MGD), AOT*
- Straight line \((S_n) \), AOT
- Straight line \((S_n) \), CRE**

** CRE: collisional radiative equilibrium

TC14644e

* AOT: astrophysical opacity tables
* R. Epstein et al., Bull. Am. Phys. Soc. 43, 1666 (1998);
** CRE: collisional radiative equilibrium
Summary/Conclusions

Radiation transport strongly affects the expansion of the rarefaction wave formed by the shock released from the laser-driven CH foil

- Experiments using VISAR* showed early expansion (before the shock release) of the back surface of the CH foil
- The buried Au layer reduced the extent and scale length of the density profile in the rarefaction wave, consistent with radiation preheat hypothesis
- The Al layer on the laser side of the target did not affect the release, which ruled out the laser shinethrough as the early expansion mechanism

VISAR: velocity interferometer system for any reflector