In-Flight Shell Breakup in Direct-Drive DT Cryogenic Implosions

R. C. Shah University of Rochester Laboratory for Laser Energetics 62nd Annual Meeting of the American Physical Society Division of Plasma Physics 9–13 November 2020

Summary

The onset of hot-spot x-ray emission in directly driven DT cryogenic implosions is used to diagnose hot-spot assembly*

- The onset of hot-spot emission is observed at a larger radius than calculated by a 1-D models over a range of varying DT cryogenic implosions
- The discrepancy in the emission onset increases with an instability parameter^{**} S = IFAR/ $\alpha^{1.1}$, where α is adiabat and IFAR is in-flight aspect ratio
- For the least-stable implosion (highest S), modeling that includes laser imprint recovers the advance in emission; however, imprint does not explain the more-stable implosions

The results suggest a gap in our understanding specific to decompression at the start of deceleration.

^{*} R. C. Shah et al., "Probing In-Flight Shell Decompression in Cryogenic Implosions on OMEGA," submitted to Physical Review Letters.

^{**} V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014).

Collaborators

S. X. Hu, I. V. Igumenshchev, J. Baltazar, D. Cao, C. J. Forrest, V. N. Goncharov, V. Gopalaswamy, D. Patel, W. Theobald, and S. P. Regan

University of Rochester Laboratory for Laser Energetics

F. Philippe

CEA

Technique

An observed discrepancy in the onset of hot-spot x-ray self-emission motivated its use to diagnose early-stage hot-spot formation

- An emission advance was shown in simulations of plastic implosions to accompany shell thickening due to imprint*
- An analysis that extracts shell thickness is also being considered for the DT system (earlier talk, J. Baltazar *et al.*, BO09.00006)

LLE

Modeling

Three-dimensional modeling shows imprint can cause early hot-spot emission

Uniform Imprint ASTER* • 10¹ 100 µm 10 resolves $\ell < 200$ ho (g/cm³) ho (g/cm³) speckle-based model — 10⁰ 5 for laser imprint • S = 25 10-0 $- \alpha = 1.7$, IFAR = 39 90% yield reduction Signal (arbitrary units) — 1.0 (arbitrary units) due to imprint Signal 0.5 0.5 No CD emission 0.0 0.0 0 100 200 $r(\mu m)$ Profile relaxation drives the early emission.

* I. V. Igumenshchev *et al.*, Phys. Plasmas <u>23</u>, 052702 (2016).;

I. V. Igumenshchev et al., Phys. Rev. Lett. 123, 065001 (2019).

Results: Data and Model

Two companion shots contrast the role of imprint in creating the emission discrepancy

• Imprint is modifying hot-spot formation (as compared to less specific signatures such as Y_{DT} , ρr)

• There is a modeling gap regarding hot-spot formation for the more-stable implosion

Results

The emission onset for implosions of differing stabilities is compared to 1-D modeling (*LILAC*)

- Δ*R*_{emis} is the shift in onset determined from the emission versus limb-position curves of each analyzed shot
- The 3-D model suggests $S \le 10$ are not explained by imprint

The discrepancy is reduced for more-stable implosions.

Additional experiments and data will test the leading candidate hypotheses for the discrepancy in the onset of the x-ray self-emission from the hot spot

- Hydrodynamic origin
 - Condensate, debris and damage maybe accumulated during cryogenic processing
 - a new cryo microscope will inspect for ~micron features after DT diffusion fill*
- Shock-related processes such shock timing or shock release (studied in plastic ablator to date**, †)
 - implosions are being planned in which shock parameters will be maintained while stability is increased with thicker cryogenic layers

MD: molecular dynamics

- * R. T. Janezic, D. Bredesen, and M. D. Wittman, Laboratory for Laser Energetics, private communication (2020).
- ** D. Haberberger et al., Phys. Rev. Lett. 123, 235001 (2019).
- † S. Zhang and S. X Hu, Phys. Rev. Lett. 125, 105001 (2020).

UR

The onset of hot-spot x-ray emission in directly driven DT cryogenic implosions is used to diagnose hot-spot assembly*

- The onset of hot-spot emission is observed at a larger radius than calculated by a 1-D models over a range of varying DT cryogenic implosions
- The discrepancy in the emission onset increases with an instability parameter^{**} S = IFAR/ $\alpha^{1.1}$, where α is adiabat and IFAR is in-flight aspect ratio
- For the least-stable implosion (highest S), modeling that includes laser imprint recovers the advance in emission; however, imprint does not explain the more-stable implosions

The results suggest a gap in our understanding specific to decompression at the start of deceleration.

^{*} R. C. Shah et al., "Probing In-Flight Shell Decompression in Cryogenic Implosions on OMEGA," submitted to Physical Review Letters.

^{**} V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014).

Backup

Enhanced emission due to mix is not considered a primary candidate for the observation

- Unless imprint is OVER-predicted and fortuitously in agreement, good agreement in the low-stability case is contrary to C mixing in higher-stability implosions
- Broad emission in the core is observed rather than localized features such as associated with fill tube at the NIF
- Mix is not indicated for implosions of stabilities in question based on previous analysis of x-ray emission* (see also D. Cao *et al.*, BO10.00006, this conference)

* T. C. Sangster *et al.*, Phys. Plasmas <u>20</u>, 056317 (2013). ** R. Epstein *et al.*, Phys. Plasmas 22, 022707 (2015).

