Controllable TNSA Deuteron Beams using Deuterated Titanium Targets Toward Generating a Tritium Beam

A. K. Schwemmlein University of Rochester Laboratory for Laser Energetics 62nd Annual Meeting of the American Physical Society Division of Plasmas Physics 9–13 November 2020

Summary

Energetic TNSA deuteron beams were generated using deuterated titanium targets

- A platform for a MeV tritium beam at the Laboratory for Laser Energetics is being developed using deuterium as surrogate
- Tritium-induced reactions like T(t, 2n) α and ${}^{6}Li$ (t, p) ${}^{8}Li$ allow for the study of exotic neutron rich nuclei relevant to ab-initio nuclear structure calculations
- The deuteron yield depends only marginally on the deuteration conditions
- The deuteron spectra transition from exponential to asymmetric Gaussian with increasing laser energy
- Numerical simulations of the ion-acceleration process help to interpret these puzzling results
- Mean energies between 0.5 MeV (MTW) and 5 MeV (OMEGA EP) were observed

C. Stoeckl,¹ W. T. Shmayda,¹ C. J. Forrest,¹ J. P. Knauer,¹ S. P. Regan,¹ and W. U. Schröder^{1,2}

¹University of Rochester Laboratory for Laser Energetics

²Departments of Physics and Chemistry

Protons in the contamination layers are isotopically exchanged with deuterium from a pure deuterium atmosphere

Hydrocarbon

- Titanium targets are exposed to a deuterium atmosphere ullet
- Molecular deuterium dissociates at the surface and migrates • into contamination layers
- Deuterium temperature, pressure, and exposure time have ulletonly marginal impact on the deuterium yield

Targets are loaded at 900 Torr of D₂ pressure at 350°C for 24 hours.

UR

The MTW laser accelerates deuterons from a deuterated Ti foil toward a Thomson parabola

The MTW laser at LLE provides a flexible mid-scale capability for nuclear science experiments

ROCHESTER

For each individual shot, the intensity is binned along each trace to obtain a spectrum

TNSA experiments at constant pulse duration but increasing energy show the formation of a peak

Summary/Conclusions

Energetic TNSA deuteron beams were generated using deuterated titanium targets

- A platform for a MeV tritium beam at the Laboratory for Laser Energetics is being developed using deuterium as surrogate
- Tritium-induced reactions like T(t, 2n) α and ${}^{6}Li$ (t, p) ${}^{8}Li$ allow for the study of exotic neutron rich nuclei relevant to ab-initio nuclear structure calculations
- The deuteron yield depends only marginally on the deuteration conditions
- The deuteron spectra transition from exponential to asymmetric Gaussian with increasing laser energy
- Numerical simulations of the ion-acceleration process help to interpret these puzzling results
- Mean energies between 0.5 MeV (MTW) and 5 MeV (OMEGA EP) were observed

Backup

Boundary conditions for constant laser pulse durations but varying energies

- The ions are accelerated by n_e electrons with an exponential energy distribution of temperature T_e
- To first order, T_e equals the ponderomotive potential,

$$T_e = \frac{e^2}{4m_e\omega^2}E^2 = \frac{e^2}{4m_e\omega^2}\frac{2I}{\epsilon_0c}$$

• To first order, n_e equals the laser energy divided by the average electron energy,

$$n_e = \eta rac{E_{laser}}{T_e} **$$

- Combining equations reveals that n_e depends only on laser pulse duration and spot size
- \rightarrow Varying only E_{laser} should increase T_e but leave n_e constant

The highest observed ion energy was determined and related to the laser energy

A fit to \sqrt{E} reproduces the cutoff energies of hydrogen and deuterium very well, as observed by other authors.*

*E. L. Clark et al., Phys. Rev. Lett. 85, 1654 (2000).

