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Summary

• Implosion experiments are able to access the most extreme thermodynamic states within laboratory 
settings, but characterizing those states is challenging

• Bayesian inference techniques, widely used in other areas of physics, bring together measurements 
and additional constraints, explicitly allowing for fully developed error quantification

• The time history of the energetics in an implosion experiment is extracted using the combination
of a reduced physics model and Bayesian inference techniques

• This same methodology can be used to characterize a variety of convergent high-energy-density (HED) 
experiments to facilitate fundamental physics measurements

Bayesian inference is used to constrain the temporal evolution of energy
in thin-shelled implosions from integrated measurements*

____________
*J.J. Ruby et al. Phys. Rev. Let. (2020) (accepted)
*J.J. Ruby et al. Phys. Rev. E (2020) (accepted)
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• The temperature and density conditions 
within implosions lead to interesting 
thermodynamic and atomic processes1,2

• Understanding these processes requires 
characterizing the physical states within 
implosions

• The energy and, ultimately, pressure are
key ways to characterize the high-energy-
density states

Motivation

Implosions access temperature and density conditions
where many interesting physical phenomena occur

____________
3J. N. Bahcall, A. M. Serenelli, and S. Basu, Astrophys. J. 621, L85 (2005).
ICF: inertial confinement fusion

____________
1S. X. Hu et al., Nat. Commun. 11, 1989 (2020).
2E. R. Harrison, Proc. Phys. Soc. 84, 213 (1964).
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• The ICF community has developed many techniques and diagnostics to make very detailed 
measurements of implosions 

• These same measurements can be applied to less-complex implosions to constrain reduced physics 
models of the system

• Bayesian inference allows for physical parameter estimation with a robust uncertainty quantification

The detailed measurements made during implosion experiments
contain much information but extracting information is difficult

• Pressure
• Temperature 
• Density
• Ionization

• Energy coupling
• Thermal Conductivity
• Equilibration Rate
• Radiation Transport

X-ray image of 
exploding shell



8

Outline

• Introduction

• Experimental setup and measurements

• Bayesian inference and model verification

• Results

• Extension to other systems



9

Thin-shelled “exploding-pusher” targets provide an established*
implosion platform that is simpler than cryogenic implosions

• Fuel = 18.9 atm D2

• Shell = 3 !m SiO2

• 600-ps square pulse
• 60-beam symmetric drive
• 14-kJ incident energy

Exploding pushers are
• Low shell mass (low inertia)
• Shock dominated
• Low convergence
• One interface
• High stability

____________
*B. Ahlborn, M. H. Key, and A. R. Bell, Phys. Fluids 25, 541 (1982).
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The x-ray self-emission generated from the rebounding shock
interacting with remaining shell material was measured*

____________
*J.J. Ruby et al. Phys. Rev. Let. (2020) (accepted)
*J.J. Ruby et al. Phys. Rev. E (2020) (accepted)
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Experimental Measurements

The radially averaged emission is used to track the
position of the expanding shell as a function of time

____________
FC: framing camera
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Reduced Model

A mechanical model* of the shell is used to describe its trajectory 
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____________
*J.J. Ruby et al. Phys. Rev. Let. (2020) (accepted)
*J.J. Ruby et al. Phys. Rev. E (2020) (accepted)
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Synthetic data is generated using the 1-D hydrodynamics code LILAC*

____________
*J. Delettrez et al., Phys. Rev. A 36, 3926 (1987).
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Bayesian inference* is used to construct parameter
probability distributions based on the synthetic data

____________
*D. S. Sivia and J. Skilling, Data Analysis: A Bayesian Tutorial, 2nd ed. (Oxford University Press, Oxford, 2006).

Parameter 
probability
distribution

Likelihood 
distribution

Parameter 
priors
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The parameter probability distributions are used to 
construct probabilities for unobserved quantities

____________
HPD: highest posterior density
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The parameter distributions resulting from the experimental
data are single modal and some show correlations

Larger mass ablation rate
= smaller peak pressure
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The measurements are able to constrain the trajectory and pressures
at times before, during, and after the measurement

Time of measurement<5% error in radial measurements gives 
~40% error in Pressure amplitude 
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The distributions of energy and mass in time are also constrained, showing
that the peak fuel internal energy is about 10% of the incident laser energy

Additional measurements, such as neutron yield, can be used to decrease error on energy measurements. 
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• Previously difficult to analyze data sets can be self-consistently constrained
� integrated measurements
� correlated variables

• Physics intuition can be explicitly accounted for rather than appearing in implicit assumptions 

• Different data sets can be brought together and used to constrain each other
� joint analysis of all diagnostics from one experiment rather than separate pipelines 
� data from multiple experiments can be used in conjunction to constrain otherwise 

unconstrained models

• The information rich data will facilitate using more complex models

Path Forward

Using simulations, data analysis, and experimental design/execution in conjunction
will allow accurate, self-consistent measurements of HED phenomena. 

Bayesian inference techniques can be used to extract
information from a variety of experiments in HED science

Mechanical Thermodynamic … 1-D hydro 2-D hydro 3-D hydro
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Summary/Conclusions

• Implosion experiments are able to access the most extreme thermodynamic states within laboratory 
settings, but characterizing those states is challenging

• Bayesian inference techniques, widely used in other areas of physics, bring together measurements 
and additional constraints, explicitly allowing for fully developed error quantification

• The time history of the energetics in an implosion experiment is extracted using the combination
of a reduced physics model and Bayesian inference techniques

• This same methodology can be used to characterize a variety of convergent high-energy-density (HED) 
experiments to facilitate fundamental physics measurements

Bayesian inference is used to constrain the temporal evolution of energy
in thin-shelled implosions from integrated measurements
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Bayesian inference is used to estimate the parameters
from the model based on the synthetic data

____________
*D. S. Sivia and J. Skilling, Data Analysis: A Bayesian Tutorial, 2nd ed. (Oxford University Press, Oxford, 2006).
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