Bayesian Inference of Energy Transfer in Gigabar Convergent Experiments

J. J. Ruby University of Rochester Laboratory for Laser Energetics

62nd Annual Meeting of the American Physical Society Division of Plasmas Physics 9–13 November 2020

Bayesian inference is used to constrain the temporal evolution of energy in thin-shelled implosions from integrated measurements^{*}

- Implosion experiments are able to access the most extreme thermodynamic states within laboratory settings, but characterizing those states is challenging
- Bayesian inference techniques, widely used in other areas of physics, bring together measurements and additional constraints, explicitly allowing for fully developed error quantification
- The time history of the energetics in an implosion experiment is extracted using the combination of a reduced physics model and Bayesian inference techniques
- This same methodology can be used to characterize a variety of convergent high-energy-density (HED) experiments to facilitate fundamental physics measurements

Collaborators

J. R. Rygg, D. A. Chin, C. J. Forrest, V. Yu. Glebov, C. Stoeckl, and G. W. Collins University of Rochester Laboratory for Laser Energetics

> B. Bachmann, J. A. Gaffney, and Y. Ping Lawrence Livermore National Laboratory

> > N. V. Kabadi and P. J. Adrian

Plasma Science and Fusion Center Massachusetts Institute of Technology

- Introduction
- Experimental setup and measurements
- Bayesian inference and model verification
- Results
- Extension to other systems

• Introduction

- Experimental setup and measurements
- Bayesian inference and model verification
- Results
- Extension to other systems

Motivation

Implosions access temperature and density conditions where many interesting physical phenomena occur

 The temperature and density conditions within implosions lead to interesting thermodynamic and atomic processes^{1,2}

- Understanding these processes requires characterizing the physical states within implosions
- The energy and, ultimately, pressure are key ways to characterize the high-energy-density states

¹S. X. Hu *et al.*, Nat. Commun. <u>11</u>, 1989 (2020). ²E. R. Harrison, Proc. Phys. Soc. <u>84</u>, 213 (1964). ³J. N. Bahcall, A. M. Serenelli, and S. Basu, Astrophys. J. <u>621</u>, L85 (2005). ICF: inertial confinement fusion

UR

The detailed measurements made during implosion experiments contain much information but extracting information is difficult

- The ICF community has developed many techniques and diagnostics to make very detailed measurements of implosions
- These same measurements can be applied to less-complex implosions to constrain reduced physics models of the system
- Bayesian inference allows for physical parameter estimation with a robust uncertainty quantification

- Energy coupling
- Thermal Conductivity
- Equilibration Rate
- Radiation Transport

- Pressure
- Temperature
- Density
- Ionization

- Introduction
- Experimental setup and measurements
- Bayesian inference and model verification
- Results
- Extension to other systems

Thin-shelled "*exploding-pusher*" targets provide an established* implosion platform that is simpler than cryogenic implosions

- Fuel = 18.9 atm D₂
- Shell = 3 μ m SiO₂
- 600-ps square pulse
- 60-beam symmetric drive
- 14-kJ incident energy

Exploding pushers are

- Low shell mass (low inertia)
- Shock dominated
- Low convergence
- One interface
- High stability

The x-ray self-emission generated from the rebounding shock interacting with remaining shell material was measured^{*}

*J.J. Ruby et al. Phys. Rev. E (2020) (accepted)

Experimental Measurements

The radially averaged emission is used to track the position of the expanding shell as a function of time

- Introduction
- Experimental setup and measurements
- Bayesian inference and model verification
- Results
- Extension to other systems

Reduced Model

A mechanical model^{*} of the shell is used to describe its trajectory

Synthetic data is generated using the 1-D hydrodynamics code LILAC*

Bayesian inference^{*} is used to construct parameter probability distributions based on the synthetic data

*D. S. Sivia and J. Skilling, Data Analysis: A Bayesian Tutorial, 2nd ed. (Oxford University Press, Oxford, 2006).

The parameter probability distributions are used to construct probabilities for unobserved quantities

ROCHESTER OF ENERGY Office of Science

- Introduction
- Experimental setup and measurements
- Bayesian inference and model verification
- Results
- Extension to other systems

The parameter distributions resulting from the experimental data are single modal and some show correlations

The measurements are able to constrain the trajectory and pressures at times before, during, and after the measurement

The distributions of energy and mass in time are also constrained, showing that the peak fuel internal energy is about 10% of the incident laser energy

Additional measurements, such as neutron yield, can be used to decrease error on energy measurements.

- Introduction
- Experimental setup and measurements
- Bayesian inference and model verification
- Results
- Extension to other systems

Bayesian inference techniques can be used to extract information from a variety of experiments in HED science

- Previously difficult to analyze data sets can be self-consistently constrained
 - integrated measurements
 - correlated variables
- Physics intuition can be explicitly accounted for rather than appearing in implicit assumptions
- Different data sets can be brought together and used to constrain each other
 - joint analysis of all diagnostics from one experiment rather than separate pipelines
 - data from multiple experiments can be used in conjunction to constrain otherwise unconstrained models
- The information rich data will facilitate using more complex models

Mechanical \longrightarrow Thermodynamic \longrightarrow ... \longrightarrow 1-D hydro \longrightarrow 2-D hydro \longrightarrow 3-D hydro

Using simulations, data analysis, and experimental design/execution in conjunction will allow accurate, self-consistent measurements of HED phenomena.

Bayesian inference is used to constrain the temporal evolution of energy in thin-shelled implosions from integrated measurements

- Bayesian inference techniques, widely used in other areas of physics, bring together measurements and additional constraints, explicitly allowing for fully developed error quantification
- The time history of the energetics in an implosion experiment is extracted using the combination of a reduced physics model and Bayesian inference techniques
- This same methodology can be used to characterize a variety of convergent high-energy-density (HED) experiments to facilitate fundamental physics measurements

Backup

Bayesian inference is used to estimate the parameters from the model based on the synthetic data

