Hot-Electron Preheat in Hydrodynamically Scaled Direct-Drive
Implosions at the National Ignition Facility and OMEGA
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Hot electron preheat has been diagnosed in hydrodynamically-scaled PDD
Implosions on NIF and OMEGA to assess direct-drive scalability
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 Hydrodynamic scaling underpins the extrapolation of direct-drive implosion performance
from OMEGA to NIF, but not all aspects of physics scale (e.g. hot electron preheat)

A platform using Ge-doped layers has been developed to diagnose hot electron preheat in
hydro-scaled NIF and OMEGA implosions at 101> W/cm? (720 kJ and 18 kJ, respectively)

« Both NIF and OMEGA experiments show ~0.2% of laser energy deposited as hot electron
preheat in the inner ~80% of unablated shell, though NIF experiments show more hot
electrons overall
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Hydrodynamic scaling is used to extrapolate performance of direct-drive cryogenic
iImplosions from OMEGA to NIF energies
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Certain aspects of physics that affect performance, e.g. hot electron preheat,
do not scale hydrodynamically and their scaling needs to be studied
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To study preheat scaling, hydrodynamically equivalent polar direct drive (PDD)
Implosions were designed for NIF and OMEGA, spanning 40x in laser energy
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A direct-drive implosion platform has been developed using Ge-doped layers to
diagnose hot electron preheat deposited into the inner layer of the shell
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For an identical laser drive and identical hot electron source, the difference
in hard x-rays o« hot electron energy deposited in Ge-doped layer

Platform based on A. Christopherson, et al. (submitted to Physical Review Letters).
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Hard x-ray (HXR) emission on NIF shows the expected variation with Ge-doped
layer thickness, with identical LPI
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See also A. A. Solodov et al. BO09.00015 (this session)
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Hot electron preheat in NIF implosions is inferred to be ~0.2% of laser energy
(or ~2 kd/mg of shell mass) over the inner ~80% of unablated shell
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This level of preheat is close to ~0.15% limit for direct-drive ignition designs;
Si layers have been found to reduce preheat by ~2x

See also A. A. Solodov et al. BO09.00015 (this session)
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Hydrodynamically-scaled versions of these experiments on OMEGA show
preheat ~0.15% of laser energy deposited to the inner 60% of unablated shell

UR
LLE
Ablated Ablated
OMEGA plasma plasma
capsule —_ !
_ ¥ @ | | | 3 — I ,
% 35 pm o 0.6 - B |
> \V//308 um - £ |
3 o 2
2 £ 21 i i
- 0.4 - . ® |
¥ g :
o 2 B |
£ 02r - « 1 |
= — Polar direct drive (PDD) l
g — Symmetric direct drive (SDD) I
3 0.0 . ) : 0 L1 1 1
10 20 30 40 0 10 20 30 40
R — Rinner (14m) R - Rinner (1m)

E29263

Caveat: SDD experiments at ~10% higher laser power

Preheat is not strongly sensitive to polar drive (PDD) vs. symmetric drive (SDD) illumination
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NIF and OMEGA experiments show a similar fraction of hot electron energy

deposited to the inner shell layer, despite more hot e- generation on NIF
UR

LLE
N190306-001

Ablated Ablated
OMEGA OMEGA (18 kJ) plasma NIF (720 kJ) plasma
capsule

=
308 um
3

I [ |

S
o

Cumulative fi,ot (% Of Ejzser)

Cumulative f,ot (% of Ejager)

0.4 -
0.2 =
0.0 .
40 0 20 40 60 80 100 120
R — Rinner (um)

E29264

These results support validity of hydro-scaling in warm implosions, though hot electron attenuation in the
outer ablator is important and will have to be accounted for in cryogenic implosions with ablated DT
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Summary/Conclusions

Hot electron preheat has been diagnosed in hydrodynamically-scaled PDD
Implosions on NIF and OMEGA to assess direct-drive scalability
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 Hydrodynamic scaling underpins the extrapolation of direct-drive implosion performance
from OMEGA to NIF, but not all aspects of physics scale (e.g. hot electron preheat)

A platform using Ge-doped layers has been developed to diagnose hot electron preheat in
hydro-scaled NIF and OMEGA implosions at 101> W/cm? (720 kJ and 18 kJ, respectively)

« Both NIF and OMEGA experiments show ~0.2% of laser energy deposited as hot electron
preheat in the inner ~80% of unablated shell, though NIF experiments show more hot
electrons overall

These result suggest similar preheat at NIF and OMEGA scales in warm implosions, though cryogenic

implosions will have less shielding by outer ablator and will have to be accounted for on NIF
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APPENDIX
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SRS signal confirms an identical hot electron source in doped and un-doped
NIF experiments
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Hydrodynamically-scaled versions of these experiments on OMEGA show
~0.15% of laser energy deposited to the inner 60% of unablated shell
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Results are insensitive to polar drive (PDD) vs. symmetric drive (SDD) illumination, but

are affected by laser beam smoothing (SSD)
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NIF and OMEGA experiments show a similar fraction of hot electron energy
deposited to the inner shell layer, despite more hot e generation on NIF
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These results suggest hot electron attenuation in the outer ablator is important,
which will have to be accounted for in cryogenic implosions with ablated DT
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NIF and OMEGA experiments show a similar fraction of hot electron energy
deposited to the inner shell layer, despite more hot e- generation on NIF
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These results support validity of hydro-scaling in warm implosions, though hot electron attenuation in the
outer ablator is important and will have to be accounted for in cryogenic implosions with ablated DT

[would be nice if Andrey can do simulations to show how much hots energy would get into DT payload on
NIF in a cryo design]
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