Laser-Direct-Drive Energy-Coupling Experiments Using Spherical Solid-Plastic Targets at the National Ignition Facility (NIF)

University of Rochester Laboratory for Laser Energetics

S. P. Regan et al.

9–13 November 2020

Energy-coupling experiments relevant to laser-direct-drive (LDD) ignition-target designs* are being conducted at the National Ignition Facility (NIF) using a spherical, solid-plastic target

- Solid spheres offer the advantage of quantifying energy coupling without the challenges from hydrodynamic instabilities of thin-shell implosions or kinetic effects in exploding pushers
- NIF polar-direct-drive (PDD) implosions were irradiated with 0.5 MJ of laser energy and a peak intensity of 8 \times 10¹⁴ W/cm²
- 2-D DRACO simulations using CBET** and nonlocal heat-transport models* predict accurately the energy coupling diagnosed with shock-trajectory measurements

Future experiments on OMEGA with scaled solid spheres are planned to test the scaling arguments of PDD implosions from OMEGA to the NIF.

* J. A. Marozas, JT02.00001, this conference (invited).

** CBET: cross-beam energy transfer

K. Anderson et al., TO08.00009, this conference.

Collaborators

W. Theobald, P. B. Radha, R. Betti, M. J. Rosenberg, R. S. Craxton, A. Solodov, A. Shvydky, K. S. Anderson, J. A. Marozas, T. J. B. Collins, V. N. Goncharov, D. Turnbull, and E. M. Campbell Laboratory for Laser Energetics University of Rochester

> C. M. Shuldberg and R. W. Luo General Atomics

R. Heredia, B. Bachmann, T. Döeppner, and M. Hohenberger Lawrence Livermore National Laboratory

> R. Scott and K. Glize Rutherford Appelton Laboratory

A. Colaïtis and A. Casner Centre Lasers Intenses et Applications University of Bordeaux

Motivation

The overarching goal is to test the scaling arguments of PDD implosions from the 20-kJ OMEGA (configured for PDD) to the 2.1-MJ NIF*

Previous Experiment

Energy coupling was investigated for NIF PDD implosions using shell trajectory measurements inferred from coronal plasma emission and x-ray radiography*

 ^{*} P. B. Radha et al., Phys. Plasmas <u>23</u>, 056305 (2016).
*E*_{min}: minimum fuel energy required for ignition
*V*_{imp}: implosion velocity

Energy-coupling experiments relevant to LDD ignition-target designs are being conducted on the NIF using a spherical, solid-plastic target

Solid spheres offer the advantage of quantifying energy coupling without the challenges from hydrodynamic instabilities of thin-shell implosions or kinetic effects in exploding pushers.

One hundred eighty-four NIF laser beams having total energy of 0.5 MJ irradiated the target in a PDD geometry with a peak intensity of 8 \times 10¹⁴ W/cm²

Shock-trajectory measurements are recorded after the main drive turns off.

The trajectory was recorded over two NIF shots using a pinhole imager on an x-ray framing camera with ~100-ps temporal and ~30- μ m spatial resolution

The peak attenuation in the measured azimuthally-averaged x-ray radiograph was used to track the shock trajectory

The radius of peak attenuation is recorded for each of the gated x-ray radiographs.

2-D DRACO simulations using CBET and nonlocal heat-transport models* predict accurately the energy coupling diagnosed with shock-trajectory measurements

E29388

X-ray radiographs including the instrument response function are calculated with 2-D *DRACO* / Spect3D**, azimuthally averaged, and compared with the measurements.

* J. A. Marozas, JT02.00001, this conference (invited).

** J. J. MacFarlane *et al.*, High Energy Density Phys. <u>3</u>, 181 (2007).

Summary/Conclusions

Energy-coupling experiments relevant to laser-direct-drive (LDD) ignition-target designs* are being conducted at the National Ignition Facility (NIF) using a spherical, solid-plastic target

- Solid spheres offer the advantage of quantifying energy coupling without the challenges from hydrodynamic instabilities of thin-shell implosions or kinetic effects in exploding pushers
- NIF polar-direct-drive (PDD) implosions were irradiated with 0.5 MJ of laser energy and a peak intensity of 8 \times 10¹⁴ W/cm²
- 2-D DRACO simulations using CBET** and nonlocal heat-transport models* predict accurately the energy coupling diagnosed with shock-trajectory measurements

Future experiments on OMEGA with scaled solid spheres are planned to test the scaling arguments of PDD implosions from OMEGA to the NIF.

* J. A. Marozas, JT02.00001, this conference (invited).

** CBET: cross-beam energy transfer K. Anderson et al., TO08.00009, this conference.

