Vacuum Acceleration of Electrons in a Dynamic Laser Pulse

D. Ramsey, Ph.D. Candidate
Advisors: J.P. Palastro & D.H. Froula
Laboratory for Laser Energetics

62nd Annual APS DPP Meeting
Virtual
Collaborators

Laboratory for Laser Energetics
University of Rochester
The flying focus enables a novel mechanism for vacuum acceleration*

- Typical planar pulses cannot impart net momentum to electrons

- Dynamic planar-like flying focus pulses can accelerate electrons to relativistic momenta (either positive or negative)

Summary

The flying focus enables a novel mechanism for vacuum acceleration

- Typical planar pulses cannot impart net momentum to electrons
 - The energy gained during ponderomotive acceleration in the leading edge of the intensity peak is lost during ponderomotive deceleration in the trailing edge

- Dynamic planar-like flying focus pulses can accelerate electrons to relativistic momenta (either positive or negative)

Ramsey et al., Phys. Rev. E 102, 43207 (2020)
The flying focus enables a novel mechanism for vacuum acceleration

- Typical planar pulses cannot impart net momentum to electrons
 - The energy gained during ponderomotive acceleration in the leading edge of the intensity peak is lost during ponderomotive deceleration in the trailing edge

- Dynamic planar-like flying focus pulses can accelerate electrons to relativistic momenta (either positive or negative)
 - The ponderomotive force propagates at a subluminal velocity

Ramsey et al., Phys. Rev. E 102, 43207 (2020)
The flying focus enables a novel mechanism for vacuum acceleration

• Typical planar pulses cannot impart net momentum to electrons
 - The energy gained during ponderomotive acceleration in the leading edge of the intensity peak is lost during ponderomotive deceleration in the trailing edge

• Dynamic planar-like flying focus pulses can accelerate electrons to relativistic momenta (either positive or negative)
 - The ponderomotive force propagates at a subluminal velocity
 - The electron gains enough energy during ponderomotive acceleration in the leading edge of the intensity peak that it can overtake the pulse

The flying focus enables a novel mechanism for vacuum acceleration

- Typical planar pulses cannot impart net momentum to electrons
 - The energy gained during ponderomotive acceleration in the leading edge of the intensity peak is lost during ponderomotive deceleration in the trailing edge

- Dynamic planar-like flying focus pulses can accelerate electrons to relativistic momenta (either positive or negative)
 - The ponderomotive force propagates at a subluminal velocity
 - The electron gains enough energy during ponderomotive acceleration in the leading edge of the intensity peak that it can overtake the pulse
 - In an accelerated intensity peak the electron can indefinitely remain in the rising edge of the intensity peak

Ramsey et al., Phys. Rev. E 102, 43207 (2020)
Lawson-Woodward Theorem (LWT): The net energy gain for an electron in a laser pulse is zero

For net energy gain, one of the assumptions of the LWT needs to be exploited:

1. Highly relativistic electron
2. No boundaries
3. No static fields
4. Infinite interaction region
5. No non-linear effects (ponderomotive)
Lawson-Woodward Theorem (LWT): The net energy gain for an electron in a laser pulse is zero

For net energy gain, one of the assumptions of the LWT needs to be exploited:

1. Highly relativistic electron
2. No boundaries
3. No static fields
4. Infinite interaction region
5. No non-linear effects (ponderomotive)

Examples:

Lawson-Woodward Theorem (LWT): The net energy gain for an electron in a laser pulse is zero

For net energy gain, one of the assumptions of the LWT needs to be exploited:

1. Highly relativistic electron
2. No boundaries
3. No static fields
4. Infinite interaction region
5. No non-linear effects (ponderomotive)

Examples:

Lawson-Woodward Theorem (LWT): The net energy gain for an electron in a laser pulse is zero

For net energy gain, one of the assumptions of the LWT needs to be exploited:

1. Highly relativistic electron
2. No boundaries
3. No static fields
4. Infinite interaction region
5. No non-linear effects (ponderomotive)
The nonlinear ponderomotive force of a plane wave is not sufficient to break the LWT

An electron in the electromagnetic field of the pulse satisfies the conservation relation

\[
\frac{d}{dt} \left(\gamma - \frac{p_z}{m_e c} \right) = 0
\]

From the constant of motion:

\[
\frac{p_z}{m_e c} = \frac{1}{2} a^2 (z, t)
\]

Once the pulse has outrun the electron, the electron has transferred its energy back to the pulse
The nonlinear ponderomotive force of a plane wave is not sufficient to break the LWT

An electron in the electromagnetic field of the pulse satisfies the conservation relation

$$\frac{d}{dt} \left(\gamma - \frac{p_z}{m_e c} \right) = 0$$

From the constant of motion:

$$\frac{p_z}{m_e c} = 0$$

Once the pulse has outrun the electron, the electron has transferred its energy back to the pulse
The electron can gain net energy when the velocity of the intensity peak is less than the speed of light

An electron in the electromagnetic field of the pulse satisfies the conservation relation

\[
\frac{d}{dt} \left(\gamma - \beta_I \frac{p_z}{m_c c} \right) = 0 \quad \text{where} \quad \beta_I = \frac{v_I}{c}
\]

From the constant of motion:

\[
\frac{p_z}{m_c c} = \beta_I \gamma_I^2 \pm \beta_I \gamma_I^2 \left[1 - \left(\beta_I \gamma_I \right)^2 \left\langle a^2 \right\rangle \right]^{1/2}
\]

Once the electron has outrun the pulse, the electron retains energy gained in the pulse
Once the electron has outrun the pulse, the electron retains energy gained in the pulse.

From the constant of motion:

\[
\frac{d}{dt}\left(\gamma - \beta I \frac{p_z}{m_e c}\right) = 0 \quad \text{where} \quad \beta I = \frac{v_I}{c}
\]

\[
\frac{p_z}{m_e c} = 2 \beta I \gamma^2 I
\]
The flying focus combines a chromatic optic with a chirped laser pulse to control the velocity of the intensity peak

The chromatic optic and chirp determine the focal location and time of each color, respectively, resulting in a peak intensity with a dynamic trajectory.
Planar-like flying focus pulses can have subluminal intensity peaks in vacuum, which allow for net energy gain.
In the Lorentz frame of the intensity peak, the energy gain corresponds to a reflection from the ponderomotive potential

In the intensity peak frame, the ponderomotive potential is time-independent, implying the electron energy is conserved: $\gamma_i = \gamma_f$

There are two ways this can occur
There are two ways this can occur

1. $v_f = -v_i$

 The initial kinetic energy of the electron is insufficient to overcome the ponderomotive potential hill.
In the Lorentz frame of the intensity peak, the energy gain corresponds to a reflection from the ponderomotive potential.

In the intensity peak frame, the ponderomotive potential is time-independent, implying the electron energy is conserved: \(\gamma_i = \gamma_f \)

There are two ways this can occur

1. \(v_f = -v_i \)
 - The initial kinetic energy of the electron is insufficient to overcome the ponderomotive potential hill.

2. \(v_f = v_i \)
 - The initial kinetic energy of the electron is sufficient to overcome the ponderomotive potential hill.
For a particular a_0, there is an absolute limit to the energy gain. To achieve the maximum energy, the peak velocity is set such that a_c is slightly less than a_0. This leaves no remaining free parameters to further increase the energy gain. Furthermore, any unused interaction length in a single reflection is wasted.

Can an accelerated intensity peak further increase energy gains?
The electron begins at rest and the peak propagates at a constant velocity.
Once the electron is moving at the intensity peak velocity, the peak is accelerated.

When the electron reaches a_c, the peak velocity and electron velocity are equal.
Once the electron is moving at the intensity peak velocity, the peak is accelerated.

When the electron reaches a_c, the peak velocity and electron velocity are equal.

The peak is then continuously accelerated to match the increasing velocity of the electron.

This locks the electron to a fixed location within the pulse.
The trajectory-locked peak continually accelerates the electron

The equation of motion

\[
\frac{dP_z}{dt} = -\frac{1}{2\gamma} \nabla a^2
\]

can be integrated to find the momentum gain of the electron

\[
\langle P_z \rangle \approx \sqrt{\langle \beta I \gamma_I^2 \rangle + \frac{1}{2} (t - t_c) \nabla \langle a^2 \rangle |_{a=a_c}}
\]
The flying focus enables a novel mechanism for vacuum acceleration

- Typical planar pulses cannot impart net momentum to electrons
 - The energy gained during ponderomotive acceleration in the leading edge of the intensity peak is lost during ponderomotive deceleration in the trailing edge

- Dynamic planar-like flying focus pulses can accelerate electrons to relativistic momenta (either positive or negative)
 - The ponderomotive force propagates at a subluminal velocity
 - The electron gains enough energy during ponderomotive acceleration in the leading edge of the intensity peak that it can overtake the pulse
 - In an accelerated intensity peak the electron can indefinitely remain in the rising edge of the intensity peak
Optical Well/ Guiding Structure

\[f_{TEM01} - f_{TEM10} = \frac{p}{2} \]
Off the cutoff curve, momentum gained through trajectory matching at T_E exceeds momentum gained in a single reflection.

The momentum gained in trajectory matching is independent of the duration of the intensity peak.
Off the cutoff curve, momentum gained through trajectory matching at T_E exceeds momentum gained in a single reflection.

The momentum gained in trajectory matching is independent of the duration of the intensity peak.
In the intensity peak frame, the ponderomotive potential is time-independent, implying the electron energy is conserved: $\gamma_i = \gamma_f$

There are two ways this can occur.
There are two ways this can occur

1. \(v_f = -v_i \)

 The initial kinetic energy of the electron is insufficient to overcome the ponderomotive potential hill

In the intensity peak frame, the ponderomotive potential is time-independent, implying the electron energy is conserved: \(\gamma_i = \gamma_f \)
In the intensity peak frame, the energy gain corresponds to a reflection from the ponderomotive potential.

In the intensity peak frame, the ponderomotive potential is time-independent, implying the electron energy is conserved: \(\gamma_i = \gamma_f \)

There are two ways this can occur:

1. \(v_f = -v_i \)
 - The initial kinetic energy of the electron is insufficient to overcome the ponderomotive potential hill.

2. \(v_f = v_i \)
 - The initial kinetic energy of the electron is sufficient to overcome the ponderomotive potential hill.
a_c is lowered with non-zero initial co-propagating momentum and raised with non-zero counter-propagating momentum

\[a_c = \sqrt{2}(p_I \gamma_{e,i} - p_{e,i} \gamma_I) \]
With non-zero initial momentum the final momentum of the electron is altered.

\[P_{e,f} = 2P_I \gamma_I \gamma_{e,i} - P_{e,i} (\gamma_I^2 - P_I^2) \]
Flying Focus Animation: Demonstrates what the “prepulse” is
There are four “phases” to the acceleration in a flying focus pulse

Consider placing an electron such that it first encounters the rising edge of the pulse profile.

1. The electron is accelerated from rest in the forward direction on the rising edge of the pulse.
2. The electron moves out of the rising edge into the constant body of the pulse.
3. The counter-propagating focus intercepts the electron in the pulse causing it to accelerate in the backwards direction.
4. The electron overtakes the focus and as it exits the pulse is further accelerated in the backwards direction on falling edge of the pulse.
There are four “phases” to the acceleration in a flying focus pulse

Consider placing an electron such that it first encounters the rising edge of the pulse profile.

1. The electron is accelerated from rest in the forward direction on the rising edge of pulse.
2. The electron moves out of the rising edge into the constant body of the pulse.
3. The counter-propagating focus intercepts the electron in the pulse causing it to accelerate in the backwards direction.
4. The electron overtakes the focus and as it exits the pulse is further accelerated in the backwards direction on falling edge of the pulse.
There are four “phases” to the acceleration in a flying focus pulse

Consider placing an electron such that it first encounters the rising edge of the pulse profile.

1. The electron is accelerated from rest in the forward direction on the rising edge of the pulse.
2. The electron moves out of the rising edge into the constant body of the pulse.
3. The counter-propagating focus intercepts the electron in the pulse causing it to accelerate in the backwards direction.
4. The electron overtakes the focus and as it exits the pulse is further accelerated in the backwards direction on falling edge of the pulse.

\[-\nabla \langle a^2 \rangle = 0 \]
There are four “phases” to the acceleration in a flying focus pulse

Consider placing an electron such that it first encounters the rising edge of the pulse profile.

1. The electron is accelerated from rest in the forward direction on the rising edge of the pulse.

2. The electron moves out of the rising edge into the constant body of the pulse.

3. The counter-propagating focus intercepts the electron in the pulse causing it to accelerate in the backwards direction.

4. The electron overtakes the focus and as it exits the pulse is further accelerated in the backwards direction on falling edge of the pulse.
There are four “phases” to the acceleration in a flying focus pulse

Consider placing an electron such that it first encounters the rising edge of the pulse profile.

1. The electron is accelerated from rest in the forward direction on the rising edge of the pulse.
2. The electron moves out of the rising edge into the constant body of the pulse.
3. The counter-propagating focus intercepts the electron in the pulse causing it to accelerate in the backwards direction.
4. The electron overtakes the focus and as it exits the pulse is further accelerated in the backwards direction on falling edge of the pulse.
Pre-pulse Effects:

For fixed focal velocity, net energy gain requires an a_0 between two bounds.
Why use a flying focus at all? Why not just inject electrons into a luminal intensity peak and extract them at peak momentum?

For a luminal intensity peak interacting with an electron at rest, the maximum momentum gain is

$$\cdot D \frac{\delta P_z}{\delta z} = \frac{1}{4} a_0^2$$

For a flying focus peak, moving at a momentum \(P_f\) such that \(a_0 = a_c\) the maximum momentum gain is

$$\cdot D \frac{\delta P_z}{\delta z} = 2P_f \sqrt{1 + P_f^2}$$

$$= \frac{a_0}{2} \sqrt{2 + a_0^2}$$

The intensity “cost” is less using subluminal peaks compared to luminal peaks.
Why use a flying focus at all? Why not just inject electrons into a luminal intensity peak and extract them at peak momentum?

For a luminal intensity peak interacting with an electron with some initial momentum, the maximum momentum gain is

\[
\mathcal{D} P_{z,\text{Max}} = \frac{1}{4} a_0^2 (P_{z,0} + g_0) + \frac{1}{2} a_0^2 g_0
\]

For a flying focus peak, moving at velocity \(\beta_c\) such that \(a_0 = a_c\) the maximum momentum gain is

\[
\mathcal{D} P_{z,\text{Max}} = \frac{1}{2} a_0^2 P_{z,0} + \frac{1}{2} a_0 g_0 \sqrt{2 + a_0^2} + \left(\frac{1}{2} a_0^2 + \frac{1}{2} a_0 \sqrt{2 + a_0^2}\right) g_0
\]

Subluminal peaks nearly double the momentum gain at maximum as compared to luminal intensity peaks.