Vacuum Acceleration of Electrons in a Dynamic Laser Pulse
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The flying focus enables a novel mechanism for vacuum acceleration*
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« Typical planar pulses cannot impart net momentum to electrons

* Dynamic planar-like flying focus pulses can accelerate electrons to
relativistic momenta (either positive or negative)

*Ramsey et al., Phys. Rev. E 102, 43207 (2020) 3
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The flying focus enables a novel mechanism for vacuum acceleration
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« Typical planar pulses cannot impart net momentum to electrons

> The energy gained during ponderomotive acceleration in the leading edge of the
intensity peak is lost during ponderomotive deceleration in the trailing edge

* Dynamic planar-like flying focus pulses can accelerate electrons to
relativistic momenta (either positive or negative)

» The ponderomotive force propagates at a subluminal velocity

» The electron gains enough energy during ponderomotive acceleration in the leading
edge of the intensity peak that it can overtake the pulse

> In an accelerated intensity peak the electron can indefinitely remain in the rising edge of

the intensity peak




Lawson-Woodward Theorem (LWT): The net energy gain for
an electron in a laser pulse is zero
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For net energy gain, one of the assumptions of the LWT needs to be exploited:
1. Highly relativistic electron
2. No boundaries
3. No static fields

4. Infinite interaction region

5. No non-linear effects (ponderomotive)
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5. No non-linear effects (ponderomotive)

Crossed Laser-Beam Acceleration,
C.M. Halland, Opt. Commun. 114, 280 (1995)




Lawson-Woodward Theorem (LWT): The net energy gain for
an electron in a laser pulse is zero
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For net energy gain, one of the assumptions of the LWT needs to be exploited:

1. Highly relativistic electron Examples:
. Laser Spot Size
2. No boundaries 0
. . direction of )
3. No static fields envelope o laser beam propagation
4. Infinite interaction region enveiope of Wor
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Ztocus direction
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5. No non-linear effects (ponderomotive)

Vacuum Beatwave Accelerator,
Esarey et al., Phys. Rev. E 52, 5443 (1995)
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The nonlinear ponderomotive force of a plane wave is not
sufficient to break the LWT
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An electron in the electromagnetic field of the pulse satisfies the conservation
relation
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From the constant of motion:
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the electron has transferred its energy back to
the pulse
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The electron can gain net energy when the velocity of the
intensity peak is less than the speed of light
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An electron in the electromagnetic field of the pulse satisfies the conservation
relation

d
—(7—,31 pzj=0 where B,=v,/c
m.c
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From the constant of motion:
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Once the electron has outrun the pulse,
the electron retains energy gained in

the pulse
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The electron can gain net energy when the velocity of the
intensity peak is less than the speed of light
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An electron in the electromagnetic field of the pulse satisfies the conservation
relation
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The flying focus combines a chromatic optic with a chirped laser
pulse to control the velocity of the intensity peak
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T=+2l/c T=-2l/c

T

NO8:1 (T. T. Simpson)
Z03:4 (P. Franke)
MR1:1 (J.P. Palastro)

<—time

vy = C/3

The chromatic optic and chirp determine the focal location and time of each
color, respectively, resulting in a peak intensity with a dynamic trajectory
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Planar-like flying focus pulses can have subluminal intensity peaks
in vacuum, which allow for net energy gain
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In the Lorentz frame of the intensity peak, the energy gain
corresponds to a reflection from the ponderomotive potential
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In the intensity peak frame, the ponderomotive potential is time-
independent, implying the electron energy is conserved: y; = y¢

There are two ways this can occur
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For a particular a,, there is an absolute limit to the energy gain
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To achieve the maximum energy, the peak
velocity is set such that a,. is slightly less
than a,

This leaves no remaining free
parameters to further increase the energy
gain

Furthermore, any unused interaction
length in a single reflection is wasted

Can an accelerated intensity peak

further increase energy gains?




The electron begins at rest and the peak propagates at a
constant velocity
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Once the electron is moving at the intensity peak velocity, the

peak is accelerated
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When the electron reaches a_, the
peak velocity and electron velocity
are equal
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Once the electron is moving at the intensity peak velocity, the

peak is accelerated

UR

When the electron reaches a_, the
peak velocity and electron velocity
are equal

The peak is then continuously
accelerated to match the
increasing velocity of the electron

This locks the electron to a fixed
location within the pulse
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The trajectory-locked peak continually accelerates the electron
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The flying focus enables a novel mechanism for vacuum acceleration
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> The energy gained during ponderomotive acceleration in the leading edge of the
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» The ponderomotive force propagates at a subluminal velocity

» The electron gains enough energy during ponderomotive acceleration in the leading
edge of the intensity peak that it can overtake the pulse

> In an accelerated intensity peak the electron can indefinitely remain in the rising edge of

the intensity peak




Optical Well/ Guiding Structure
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Off the cutoff curve, momentum gained through trajectory
matching at T exceeds momentum gained in a single reflection
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Off the cutoff curve, momentum gained through trajectory
matching at T exceeds momentum gained in a single reflection
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a. is lowered with non-zero initial co-propagating momentum and
raised with non-zero counter-propagating momentum
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With non-zero initial momentum the final momentum of the
electron is altered.
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Flying Focus Animation: Demonstrates what the “prepulse” is
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There are four “phases” to the acceleration in a flying
focus pulse
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Consider placing an electron such that it first
encounters the rising edge of the pulse profile.
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There are four “phases” to the acceleration in a flying
focus pulse -
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Consider placing an electron such that it first
encounters the rising edge of the pulse profile.

1. The electron is accelerated from rest in the
forward direction on the rising edge of
pulse.
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There are four “phases” to the acceleration in a flying
focus pulse
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Consider placing an electron such that it first
encounters the rising edge of the pulse profile.

2. The electron moves out of the rising edge
into the constant body of the pulse.
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There are four “phases” to the acceleration in a flying
focus pulse
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Consider placing an electron such that it first
encounters the rising edge of the pulse profile.

3. The counter-propagating focus intercepts
the electron in the pulse causing it to
accelerate in the backwards direction.
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There are four “phases” to the acceleration in a flying
focus pulse
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Consider placing an electron such that it first
encounters the rising edge of the pulse profile.

B

4. The electron overtakes the focus and as it
exits the pulse is further accelerated in the
backwards direction on falling edge of the
pulse
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Pre-pulse Effects:
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Why use a flying focus at all? Why not just inject electrons into a
luminal intensity peak and extract them at peak momentum?
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For a luminal intensity peak interacting with an electron at .
rest, the maximum momentum gain is 20}
. ) = 142
D qumx T4 aO 15}

For a flying focus peak, moving at a momentum P; such
that ag = a, the maximum momentum gain is

—— Flying Focus
—— Luminal Peak

D PQ,, =2Fl+F

_ 4 2 2 or
- E +a 0 20 40 60 80 100
Final Momentum
‘DPQ,,., 22+a y The intensity “cost” is less using
DPQ, . . - a, subluminal peaks compared to luminal

peaks
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Why use a flying focus at all? Why not just inject electrons into a

luminal intensity peak and extract them at peak momentum?
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For a luminal intensity peak interacting with an electron
with some initial momentum, the maximum momentum
gain is

D PzQ/faa: = iaé(‘Pz,O + gO) 2

1,2
2 a’OgO

For a flying focus peak, moving at velocity . such that
ap = a., the maximum momentum gain is

a,8,y2 + a;

DPq/faI_Q §P +%

2 (lal+1ia,2+0a))g,
‘DPQ, . _
—z%ﬁ’bf‘bc =1441/a®+12 2
.Dqumzz,bI=1
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Subluminal peaks nearly double the
momentum gain at maximum as

compared to luminal intensity peaks




