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The first set of Polar Direct Drive (PDD) cryogenic implosions on OMEGA indicate 
that laser energy coupling is not significantly compromised in PDD geometry

• Cryogenic targets were irradiated with ignition relevant intensities in both Polar Direct Drive 
(PDD) and Spherical Direct Drive (SDD) configurations. 

• Yield in PDD experiments was ~40% of SDD implosions; a comparable reduction is calculated 
in 2D simulations. 

• Neutron rate histories indicate that this reduction is not due to reduced coupling in PDD 
geometry relative to SDD geometry. 

• Designs, more stable to the Rayleigh-Taylor instability will be investigated. 

Summary
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Cryogenic implosions are being investigated on OMEGA in Polar Drive geometry at 
ignition relevant intensity; the goal is to optimize performance

rR = 135 mg/cm2 a = 4.5      Vimp = 450 µm/ns    IFAR = 26.5

Theobald: BO09.00012; Thomas: BO09.00010; Betti: BO09.00011; 1 P. B. Radha, PoP (2015). 

• Pointing scaled from the 
best performing PDD room-temperature 
implosion at the larger scale1

SG5-860 phase plates 
E~27 kJ

SG5-650 phase plates
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Neutron yield depends on shape in simulations 
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Simulations include a CBET model with a 3D-raytrace1, 
nonlocal transport2, and first-principles EOS3 and Opacity 
with DRACO4

1 J. Marozas et al., Phys. Plasmas (2017); 2. D. Cao et al., Phys. Plasmas (2015); 
3. S. Xx. HU et al., Phys. Plasmas (2017); 4. P. B. Radha et al., Phys. Plasmas (2005).  



Experimental yield ratios are similar to those in simulations, though show a 
different dependence on Ring 3 energy
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a/b = 0.74 ± 0.13 

a/b = 1.22 ± 0.01 

a/b = 1.48 ± 0.07 



Laser drive in OMEGA PDD cryogenic implosions is close to that in SDD cryogenic 
implosions

Cryogenic implosion experiments 
NTD measurements

• Neutrons in PDD cryo implosions are produced later than in SDD implosions but within the 50 ps variation of 
instrument from day-to-day

1D Yield: Y ~ Vimp
6 a0.88 (1)

rR ~ a-0.56                         (2)

Y ~ Vimp
6 rR1.6
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1. V. N. Goncharov et al., Phys. Plasmas (2014); 2. C.D.  Zhou and R. Betti, Phys. Plasmas (2007).  



Simulations indicate that decreased drive only marginally influences yield 
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~6% reduction in implosion velocity, delays bang-time by ~ 50 ps and reduces yield by only ~30% 



Areal density is reduced by ~80% in PDD relative to SDD, insufficient to explain the 
observed yield reduction 

Ring 3 energy (% change)

80%

Y ~ Vimp
6 rR1.6-2

40

60

80

100

120

140

-10 -5 0 5 10 15

PDD

SDD

LILAC
70% • 80% of areal density reduces yield by ~ 30-36%

A
re

al
 d

en
si

ty
 (m

g/
cm

2 )

Shape, velocity, or areal density do not 
dominate experimental yield.



Thicker cryogenic shells and more stable cryogenic implosions will be investigated 
on OMEGA at the lower scale
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Vimp (µm/ns) 450 380

IFAR 26.5 20

rR(mg/cm2) 135 131

a 4.5 4.6

• The effect of shorter wavelengths will be investigated next. 
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Other options are being considered: Target solutions1

Different phase plates2

1. F. Marshall et al., Phys. Plasmas (2015); 2. P. B. Radha et al., Phys. Plasmas (2012); 
2. F. Weilacher et al., Phys. Plasmas (2015).



The first set of Polar Direct Drive (PDD) cryogenic implosions on OMEGA indicate 
that laser energy coupling is not significantly compromised in PDD geometry

• Cryogenic targets were irradiated with ignition relevant intensities in both Polar Direct Drive 
(PDD) and Spherical Direct Drive (SDD) configurations. 

• Yield in PDD experiments was ~40% of SDD implosions; a comparable reduction is calculated 
in 2D simulations. 

• Neutron rate histories indicate that this reduction is not due to reduced coupling in PDD 
geometry relative to SDD geometry. 

• Designs, more stable to the Rayleigh-Taylor instability will be investigated. 

Summary/Conclusions



Extra slides



Polar Direct Drive (PDD) is currently the only route to high-yield direct-drive 
implosions on the National Ignition Facility

* Marozas: JT02.00001; Kemp: GO09.00005

• Beam displacement, ring-dependent pulse shapes, and custom spot shapes are used to 
improve symmetry 

NIF beam configuration OMEGA 40-beam configuration OMEGA beam displacement 
schematic


