Imaging of Hydrodynamic Perturbation Evolution Using a Fresnel Zone Plate

P. M. Nilson University of Rochester Laboratory for Laser Energetics 62nd Meeting of the American Physical Society Division of Plasma Physics 9–13 November 2020

Summary

Under high-energy-density conditions, x-ray radiography of hydrodynamic perturbation evolution is improved using Fresnel zone plates

- Resolution tests using a zone plate and a 4.75-keV Ti He-like resonance line have achieved $1-\mu m$ resolution using direct x-ray detection with a CCD
- Radiographs are obtained of single-mode perturbation evolution at a shockdriven interface between a plastic pusher and a low-density foam
- The radiographs show clear bubble and spike growth and asymmetric rollup

Collaborators

F. J. Marshall, J. Kendrick, J. J. Ruby, A. Chin, D. Bishel, D. Guy, S. T. Ivancic,
C. Stoeckl, R. Earley, D. R. Harding, M. Bedzyk, G. Gates, D. W. Jacobs-Perkins,
V. N. Goncharov, T. J. B. Collins, and R. Epstein

Laboratory for Laser Energetics University of Rochester

Motivation

The understanding of inertial fusion and many high-energy-density phenomena is challenged by hydrodynamic perturbation evolution at the micron scale

• Many factors affect ICF implosions

- drive nonuniformity and implosion shape
- engineering features and capsule defects
- instability growth and mix
- Seed perturbation amplification is often required before x-ray imaging can resolve their presence
 - limits information about the system
 - motivates x-ray optic development

Zone-plate-based x-ray radiography provides a route to micron-scale spatial resolution.

ICF: inertial confinement fusion A. V. Baez, J. Opt. Soc. Am. <u>51</u>, 405 (1961). A. Do *et al.*, Rev. Sci. Instrum. <u>89</u>, 10G122 (2018). K. Matsuo *et al.*, High Energy Density Phys. 36, 100837 (2020).

LLE

The OMEGA radiography platform couples a laser-driven area backlighter to a high-magnification zone plate optic and an x-ray CCD

The zone plate deployment is set by the x-ray energy, the zone plate characteristics, and the focus equation.

The imaging system is optimized for 4.75-keV Ti He-like resonance line emission

Number of zones: 467

•

- Outermost zone width: 107 nm
- Au zone thickness: 850 nm

The efficiencies are calculated from atomic scattering factors.

At 42× magnification, a star resolution pattern shows 1- μ m spatial resolution

Spatial resolution: (1.0 \pm 0.1) μ m.

Imaging trials are carried out using single-mode perturbation evolution at an embedded interface following the passage of an unsupported shock wave

- Initial modulation wavelength: 50 μ m
- Peak-to-valley amplitude: 5 or 10 μ m

The effects of vorticity generation, hydrodynamic expansion, and nonlinear **Rayleigh–Taylor growth are observed in the radiographs at later times**

Initial peak-to-valley amplitude: 5 μ m.

ROCHESTER

9

Summary/Conclusions

Under high-energy-density conditions, x-ray radiography of hydrodynamic perturbation evolution is improved using Fresnel zone plates

- Resolution tests using a zone plate and a 4.75-keV Ti He-like resonance line have achieved $1-\mu m$ resolution using direct x-ray detection with a CCD
- Radiographs are obtained of single-mode perturbation evolution at a shockdriven interface between a plastic pusher and a low-density foam
- The radiographs show clear bubble and spike growth and asymmetric rollup

Data comparison with radiation hydrodynamic model predictions is the next step.

