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Summary

Ion trapping results in two mechanisms for CBET saturation that occur over 

different time scales

• For the experimental conditions, CBET evolves through three stages:

➢ Linear growth of IAW (0 – 12 ps)

➢ Fast saturation (12 ps – 50 ps)

➢ Slow saturation (>50 ps)

• The nonlinear evolution of CBET predicted by collisional PIC simulations is in qualitative 

agreement with focused experiments in implosion relevant conditions  (i.e. OMEGA TOP9)

• On the fast time scale, CBET saturates dues to transverse breakup of the ion-acoustic waves 

(i.e. trapped particle modulational instability)

On the long time scale, collisional thermalization of trapped ions leads to a loss of resonance that 

saturates CBET
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Cross-beam energy transfer (CBET) is the exchange of energy between 

electromagnetic waves mediated by their mutually driven ion acoustic wave (IAW)

• The TOP9* (Tunable OMEGA Port 9) platform has 

been developed at the LLE for focused studies of 

CBET in ICF relevant plasmas

• CBET plays a critical role in laser-based inertial 

confinement fusion (ICF)

➢ In direct drive: CBET scatters laser light 

away from the target, thus reducing 

absorption

➢ In indirect drive: CBET can be used to tune 

the symmetry of the implosion

*B.E. Kruschwitz et al. Proc. SPIE 10898, 108904 (2019)
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Collisional VPIC(*) simulations were performed to model the focused CBET 

experiments conducted on the OMEGA TOP9 platform

Plasma parameters

Te = 600 eV and Ti = 150 eV

ne0 = 6.0e19 cm-3

Ion species: H (55%) and N (45%)

Laser parameters

λ = 351 nm

Detuning: Δλ = 2.800 A

Ipump = 2.2e15 W/cm2

Each simulation used up to ~2x106 core-hours

*K.J. Bowers et al. Phys. Plasmas 15, 055703 (2008)
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The nonlinear evolution of CBET predicted by the simulations is in qualitative 

agreement with the experiments

• For the lowest seed intensity (1e13 W/cm2), the CBET gain is relatively constant over time

• For the higher seed intensities, the gain is reduced and decreases in time over ~ 100 ps

Experimental Measurements Simulations
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The decrease in CBET gain over time tracks the evolution of the energy in 

ion-acoustic waves

Simulation results at <Iseed> = 5e14 W/cm2

• The evolution of CBET occurs in three stages:

➢ Linear growth of IAW (0 – 12 ps)

➢ Fast saturation (12 ps – 50 ps)

➢ Slow saturation (> 50 ps)
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During the first stage (linear growth), the IAWs have a coherent structure

Electrostatic Energy Laser field amplitude
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• Higher intensity speckles drive the IAWs to larger amplitudes

During the first stage (linear growth), the IAWs have a coherent structure

Electrostatic field amplitudeElectrostatic Energy Laser field amplitude
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During the first stage (linear growth), the IAWs have a coherent structure

• Higher intensity speckles drive the IAWs to larger amplitudes

• The IAWs exhibit coherent (flat) phase fronts

Electrostatic field amplitudeElectrostatic Energy Laser field amplitude
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During the first stage (linear growth), the IAWs have a coherent structure

• The ion distribution develops a tail along the direction of the 

IAW due to trapping

• Higher intensity speckles drive the IAWs to larger amplitudes

• The IAWs exhibit coherent (flat) phase fronts

Electrostatic field amplitudeElectrostatic Energy Laser field amplitude
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In the fast saturation stage, the IAW breaks up in the direction transverse to 

its propagation (*)

(*) L. Yin et al. Phys. Rev. Lett. 99, 265004 (2007)

Electrostatic Energy Laser field amplitude
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In the fast saturation stage, the IAW breaks up in the direction transverse to 

its propagation (*)

(*) L. Yin et al. Phys. Rev. Lett. 99, 265004 (2007)

• IAW undergoes transverse breakup around ~ 12 ps – 50 ps

(trapping → bowing → filaments )

• The breakup allows for rapid side loss of trapped ions, 

dissipating the electrostatic wave energy

Electrostatic field amplitudeElectrostatic Energy Laser field amplitude
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In the fast saturation stage, the IAW breaks up in the direction transverse to 

its propagation (*)

(*) L. Yin et al. Phys. Rev. Lett. 99, 265004 (2007)

• IAW undergoes transverse breakup around ~ 12 ps – 50 ps

(trapping → bowing → filaments )

• The breakup allows for rapid side loss of trapped ions, 

dissipating the electrostatic wave energy

• Side loss and pitch-angle collisions widen the trapping tail

Electrostatic field amplitudeElectrostatic Energy Laser field amplitude
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Over longer time scales, ion-ion collisions isotropize the distributions, leading 

to an increased ion temperature

Electrostatic Energy Laser field amplitude
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Over longer time scales, ion-ion collisions isotropize the distributions, leading 

to an increased ion temperature

• The planar-like IAW has transitioned to localized electrostatic 

fluctuations

Electrostatic field amplitudeElectrostatic Energy Laser field amplitude
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Over longer time scales, ion-ion collisions isotropize the distributions, leading 

to an increased ion temperature

• The ion distribution recovers a near-Maxwellian shape with an 

elevated temperature (ion-ion collisions transfer energy from 

the tail to the bulk)

• The planar-like IAW has transitioned to localized electrostatic 

fluctuations

Electrostatic field amplitudeElectrostatic Energy Laser field amplitude
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In strong speckles, the increase in ion-temperature shifts the resonant IAW 

frequency, resulting in a reduced gain

On the long time scale, the detuning between the pump and seed beams no longer satisfies 

the matching condition for resonant excitation of the IAW with heated ions
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Summary

Ion trapping results in two mechanisms for CBET saturation that occur over 

different time scales

• For the experimental conditions, CBET evolves through three stages:

➢ Linear growth of IAW (0 – 12 ps)

➢ Fast saturation (12 ps – 50 ps)

➢ Slow saturation (>50 ps)

• The nonlinear evolution of CBET predicted by collisional PIC simulations is in qualitative 

agreement with focused experiments in implosion relevant conditions  (i.e. OMEGA TOP9)

• On the fast time scale, CBET saturates dues to transverse breakup of the ion-acoustic waves 

(i.e. trapped particle modulational instability)

On the long time scale, collisional thermalization of trapped ions leads to a loss of resonance that 

saturates CBET
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Questions?


