Construction and Implementation of an Energy-Dependent Instrument Response
Function for Accurate Analysis of Neutron Time-of-Flight Data
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It is necessary to use an energy-dependent IRF to accurately infer parameters
from nTOF data that span a wide range of energies
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« The shape of the IRF changes with incident neutron energy

« The matrix representation of the convolution is used to incorporate the energy-
dependence of the IRF

« The energy-dependent IRF is needed to infer the correct lifetime and branching
ratios of nuclear states (e.g., °He states inferred from TT data*)

Accurate neutron spectroscopy is now possible over a wide range of energies (e.g., areal

density in cryogenic experiments, inelastic reactions involving DT neutrons on D or “Li).

IRF: instrument response function
nTOF: neutron time of flight
* M. Gatu Johnson et al., Phys. Rev. Lett. 121 042501 (2018).
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The measured signal from an nTOF detector can be written as a function of time
of arrival at the detector
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Previous work assumes that the IRF varies slowly with incident neutron energy
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* If the IRF varies slowly with neutron energy***, R(E,t —t') = i 0 o . ]
R(E =Eyt—t')=Ry(t—1t'), so the fit function becomes o
" dN dE \
m(©) = ¢ [ J5IE@) 35 E@IRo(E - ¢)de o
 Theintegral can be written as a matrix multiplication ra g i
k
m(ty) = Z PIE(t')]Ro(ty —t';) >m =T P T— | o
i=1 TN, TN-—1 r1
where T is a Toeplitz matrix of the response vector with shape N, X N, 0 rN, ... TN._,
and CZL[E(EN] 5 [E()1AL; = PIEE)]T U e e T
W, TN,
I 0 0 N,

* R, Hatarik et al., Journal of Applied Physics 118 184502 (2015).
**E. P. Hartouni et al, Review of Scientific Instruments 87 11D841 (2016).




The energy-dependent convolution replaces the matrix elements with rows that
are energy dependent*
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m(t) =C | dE [E(t")] Zf, [E(t)] R[E(t'), ty — t';]dt' - m(ty) = ; P[E(t')IR[E(t'), t, —t';] > m=T P

 Each column in the matrix represents a monoenergetic IRF
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*Z.L. Mohamed, O. M. Mannion, E. P. Hartouni, J. P. Knauer, and C. J.
Forrest, submitted to Journal of Applied Physics
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A monoenergetic IRF can be constructed by convolving a measured x-ray
response with a calculated neutron interaction response
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 The x-ray response = impulse response
« Neutron interaction response = neutron transport through the detector
— IRF shape is a function of neutron energy
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Use of the energy-dependent IRF accurately infers the widths and masses of the
°He states from TT nTOF data*

UR
LLE
3 Forward fit to TT synthetic data 6 Inferred °He ground state
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** M. Gatu Johnson et al., Phys. Rev. Lett. 121 042501 (2018).
**B. Lacina, J. Ingley, and D. W. Dorn, Lawrence Livermore
National Laboratory, Report UCRL-7769 (1965).
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It is necessary to use an energy-dependent IRF to accurately infer parameters
from nTOF data that span a wide range of energies
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« The shape of the IRF changes with incident neutron energy

« The matrix representation of the convolution is used to incorporate the energy-
dependence of the IRF

« The energy-dependent IRF is needed to infer the correct lifetime and branching
ratios of nuclear states (e.g., °He states inferred from TT data*)

Accurate neutron spectroscopy is now possible over a wide range of energies (e.g., areal

density in cryogenic experiments, inelastic reactions involving DT neutrons on D or “Li).

IRF: instrument response function
nTOF: neutron time of flight
* M. Gatu Johnson et al., Phys. Rev. Lett. 121 042501 (2018).
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Interpolation over the total IRF is more accurate than attempting to directly
Interpolate over the neutron interaction responses
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« The sharp features in the neutron IRF make direct linear interpolation difficult

— Generate a representative set of neutron interaction responses, then interpolate over
the total IRF

« The x-ray response and neutron interaction responses must be start at t=0 and be area
normalized to conserve correct timing and yields in the forward fit

« Uncertainty in the total IRF arises mainly from noise on x-ray IRF*
— This is an uncertainty in the model, not the data (address by Monte Carlo)
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Fegztia Mohamed et al., submitted to Journal of Applied Physics
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The measured signal from an nTOF detector can be written as a function of time
of arrival at the detector
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.« m(t) = Cfth

0 2E [E()] [E(t)] R(E, t)dt

m(t) = the measured nTOF signal
t = time scale recorded by oscilloscope
C = calibration constant
dN/dE = neutron energy spectrum
dE/dt = Jacobian
R(E,t) = total IRF
* This can be rewritten as a functlon of the neutron’s time of arrival at the detector (t’)

m(©) = ¢ [ G IE@)] Zp (B RIECE ), 0~ ¢ la




Synthetic TT data (based on real OMEGA TT data) can be used as an example
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* Results:
— Inferred mass isn’t affected by choice of IRF (expected because mass~mean neutron energy)
— Use of energy-dependent IRF infers correct width for both states to within 2%

— Use of 2.45-MeV IRF causes ~22% decrease in inferred °He ground state width, ~10% increase in inferred
first excited state width

- Expected because ground state mass ~0.4 MeV and first excited state mass ~2.5 MeV

— Use of 14.03-MeV IRF inferred correct width for both states to within a few percent
- Width of 14.03-MeV IRF was within 300 ps of width of 8.5-MeV IRF (ground state neutron energy)

- This effect only occurs because of this specific detector configuration/material/distance and this
specific nuclear data set

* More complex and more novel data with many resonances (e.g., n(D,p)2n or “Li data) requires matrix IRF
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Synthetic TT data (based on real OMEGA TT data) can be used as an example
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» The properties (mass and width/lifetime) of the ®He ground state and first excited state can be inferred from a
forward fit to TT nTOF data

— Ground state at ~8.5 MeV neutron energy, 0.4 MeV width, excited state at ~6.5 MeV neutron energy, 2.5
MeV width

« Synthetic data was used to compare inferred values to input used to generate synthetic data
— Monoenergetic IRF’s at 2.45-MeV (DD) and 14.03-MeV (DT) can be compared to energy-dependent IRF
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Synthetic TT data (based on real OMEGA TT data) can be used as an example
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« The following results only occur because of this specific detector configuration/material/distance and this
specific nuclear data set

* More complex and more novel data with many resonances (e.g., n(D,p)2n or “Li data) requires matrix IRF
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Minimization in the forward fit must include both Gaussian- and Poisson-

distributed uncertainties

UR
LLE

« Gaussian-distributed uncertainties from digitization noise and Poisson-distributed
uncertainties from predicted number of neutrons per time bin

— Poisson component can only be determined based on the current iteration of the
forward fit
(fiti—data;)>?

« Minimize 2 = Y%, — where 6;°=0cope> + Ovi
i

2

— First term is Gaussian-distributed digitization noise, second term includes Poisson-
distributed uncertainties based on each iteration of the forward fit

dN dE

— If fit function has a form resembling V(t) ~ k {[S(E)a(E)dE_E] & IRF}, then the
dN dE 4

dE,, dt

2 es2edt)QIRF
- V() ~k{[s(E)ea(E)en]Q IRF} - GViZ = Viz{(;(kz + (?(:.S)QZ))IRF]Z

number of detected neutrons is n(t) = a(E)

Mohamed et al., submitted to Journal of Applied Physics
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The uncertainty introduced by the IRF must be determined by Monte Carlo
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« Minimization in the forward fit must include both Gaussian- and Poisson-distributed
uncertainties in the data

« The main source of uncertainty in the total IRF comes from digitization noise on the
measured x-ray response

— l.e., the measured x-ray response is one of an ensemble of responses we could have
measured given some unknown “true” x-ray response

— There are Poisson uncertainties in the calculated neutron interaction responses, but
these can be minimized by running simulations with high statistics

* Inrelation to the forward fit, this is an uncertainty in the model, not an uncertainty in the
data

« The most straightforward way to address this type of uncertainty is by Monte Carlo
— Perturb the x-ray IRF, build a series of new matrix IRFs and histogram the results

Mohamed et al., submitted to Journal of Applied Physics




