Understanding the Fusion Yield and All of Its Dependencies Using Statistical **Modeling of Experimental Data**

Laboratory for Laser Energetics

American Physical Society Division of Plasma Physics 9–13 November 2020

UR

Summary

Degradation mechanisms and their dependencies are uncovered by the statistical mapping model for OMEGA direct drive implosions

- A physics-based mapping model of the measured fusion yield onto the 1-D simulation database of OMEGA direct-drive implosions reveals dominant and subdominant degradation mechanisms
- The yield degradation with respect to 1-D simulations is quantified and it results from
 - hydrodynamic effects (stability and/or model deficiencies)
 - laser beam to target size ratio (underfilling the target)
 - age of the DT fill and He³ contamination*
 - ℓ = 1 mode from mispointing and target offset**
- Using the mapping model, the measured yield of an implosion can be corrected for each degradation mechanism, thereby enabling proper comparison between implosions and guiding target design changes

Current highest-yield implosions with optimum target size, good laser pointing, and short DT fills are predicted to achieve a neutron yield of $\approx 2 \times 10^{14^{***}}$.

** O. Mannion, KI02.00001, this conference (invited).

^{*} Harding, D. R., and W. T. Shmayda. Fusion Science and Technology 63.2 (2013): 125-131. Regan, S. P., et al. Nuclear Fusion 59.3 (2018): 032007.

^{***} R. Betti et al., BO09.00011, this conference.

Collaborators

R. Betti, J. P. Knauer, V. Gopalaswamy, D. Patel, R. Epstein, J. Carroll-Nellenback, A. R. Christopherson, K. M. Woo,
O. M. Mannion, Z. L. Mohamed, F. J. Marshall, C. Stoeckl, V. Yu. Glebov, S. P. Regan, R. C. Shah, D. H. Edgell, D. Cao,
V. N. Goncharov, I. V. Igumenshchev, P. B. Radha, T. J. B. Collins, T. C. Sangster, and E. M. Campbell

Laboratory for Laser Energetics, University of Rochester

M. Gatu Johnson, R. D. Petrasso, C. K. Li, and J. A. Frenje

Plasma Science and Fusion Center, Massachusetts Institute of Technology

Outline

- A physics-based statistical mapping model
- Degradation from the fill age and He³ accumulation
- Degradation from the ℓ = 1 mode
- Degradation from $R_{\rm b}/R_{\rm t}$
- Degradation from hydrodynamics: instabilities and/or inaccuracy in physics models
- Predictions of highest yields on OMEGA

A physics-based statistical mapping model

Multiple systematic and random mechanisms degrade the performance of OMEGA implosions

ROCHESTER

nTOF: neutron time of flight CBET: cross-beam energy transfer

If experiments are systematically perturbed, it is possible to construct a predictive model from 1-D hydrocodes and relevant input parameters

Generalization of mapping model by Gopalaswamy et al. *

Assume effects of I_{other} , R_{3-D} , and variable- S_{3-D} are subdominant and can be decoupled

$$Y^{\text{exp}} = F_1 \begin{bmatrix} O_{1\text{D}}^{\text{sim}}, S_{3\text{D}}^{\text{const}} \end{bmatrix} F_2 \begin{bmatrix} I_{\text{other}} \end{bmatrix} F_3 \begin{bmatrix} R_{3\text{D}} \end{bmatrix} F_4 \begin{bmatrix} S_{3\text{D}}^{\text{var}} \end{bmatrix}$$

remove because constant

A physics-based model to understand the fusion yield is obtained through the product of different effects

Dividing by the simulated 1-D yield leads to the yield-over-clean (YOC)

After a global fit (mapping) of data to simulation and selected input parameters, each individual dependence can be visualized by taking out all others

- Each YOC is approximated by power law dependencies of relevant variables
- For example: $YOC_{beam} \sim \left(\frac{R_b}{R_t}\right)^{\gamma} \leftarrow Laser-beam radius$ Target radius
- Nonlinear global fit (mapping) of YOC^{exp} to all variables produces exponents and confidence levels
- Each individual dependence can be visualized by isolating it from all others

$$\operatorname{YOC}_{j}^{\operatorname{exp}} \equiv \frac{\operatorname{YOC}^{\operatorname{exp}}}{\prod_{i \neq j} \operatorname{YOC}_{j}} \longrightarrow \operatorname{YOC}_{j}$$

Generalizing model predictions to new designs requires a training set with a large variety of physical conditions

- $T_{\text{max}}/T_{\text{min}}$ reaching as high as 1.7
- $R_{\rm b}/R_{\rm t}$ ranging from 0.69 to 1.05

Degradation from tritium radiation damage and He³ accumulation

He³ accumulation and β -radiation damage of ablator* are possible degradation mechanisms; fuel composition can be chosen to optimize performance

- In general: $YOC_{fuel} = F[\theta_T, \theta_D, t_{age}]$
 - θ_{T} = ice tritium fraction
 - $\theta_{\rm D}$ = ice deuterium fraction
 - t_{age} = time between end of diffusion fill and shot time
- Instead of the fill age, we use the 1–D simulated degradation from He³ contamination assuming 100% accumulation in the vapor

$$\xi_{\rm He^3} \equiv \frac{Y_{\rm 1D}^{\rm sim} (\rm DT + \rm He^3)}{Y_{\rm 1D}^{\rm sim} (\rm DT)}$$

* Harding, D. R., and W. T. Shmayda. Fusion Science and Technology 63.2 (2013): 125-131. Regan, S. P., et al. Nuclear Fusion 59.3 (2018): 032007.

Maximizing YOC_{fuel} provides the optimum fuel composition for a given fill age

• General form

$$YOC_{fuel} = F[\theta_{T}, \theta_{D}, \xi_{He^{3}}]$$

• Monotonic power law dependences are assumed

$$\operatorname{YOC}_{\operatorname{fuel}} = \theta_{\mathrm{T}}^{\delta} \theta_{\mathrm{D}}^{\mathrm{v}} \xi_{\mathrm{He}_{3}}^{\phi} \qquad \theta_{D} = 1 - \theta_{T}$$

• If $v\delta > 0$ and $\xi_{\text{He}_3} = 1$ (shot right after fill), optimum fuel composition occurs for

$$\max\left[\boldsymbol{\theta}_{\mathrm{T}}^{\delta}(1-\boldsymbol{\theta}_{T})^{\mathrm{v}}\right]$$

The fill-age degradation is slightly faster than 1-D code predictions from 100% He³ accumulation in the vapor region; optimum fuel composition occurs at 60% tritium fraction

Optimum fuel composition occurs at 60% tritium fraction

Degradation from offset and mispointing

The effects of the ℓ = 1 mode from offset and mispointing are assessed for each shot through the measured T_i asymmetries

• In 3-D simulations, the yield degradation from the ℓ = 1 mode is a monotonic function of T_{max}/T_{min}

^{*}K. M. Woo et al., Phys. Plasmas <u>25</u>, 102710 (2018); <u>27</u>, 062702 (2020). LOS: line of sight

The yield degradation from the ℓ = 1 mode extracted from the implosion database is in good quantitative agreement with the results of 3-D simulations

 The minimum relevant detectable T_i asymmetry is determined by the T_i measurement error ~300 eV (~10%)

• Power law approximation

$$\operatorname{YOC}_{\ell=1} \approx \min\left[1, \frac{\widehat{T}_R^{\min}}{\widehat{T}_R}\right]^{-\mu} \widehat{T}_R = \frac{T_{\min}}{T_{\max}}$$

- Mapping to data:
 - μ = 1.55 and $\widehat{T}_{R}^{\min} \approx 1.14$
- Note the good agreement with 3-D simulations $(\mu_{sim} = 1.53)$ and \widehat{T}_R^{min} consistent with measurement error (~10%)

TC15567a

*O. Mannion, KI02.00001, this conference (invited).

Degradation from finite laser beam size

Degradation from finite laser beam size is significant for the largersized targets used to improve energy coupling and reduce CBET

- Using larger-diameter targets to improve coupling leads to port geometry illumination nonuniformities
- This degradation depends on ratio of beam to target radius R_b/R_t
- Using 3-D ASTER* simulations, three regimes are identified:
 - I. Yield is not degraded by finite R_b/R_t YOC_{beam} \approx 1
 - II. Yield is degraded as a power law $\label{eq:YOC} YOC_{beam} \approx (R_b/R_t)^{2.2}$
 - III. Yield degrades faster than power law when the shell is broken up

TC15574

* I. Igumenshchev et al, Phys. Plasmas 23, 052702 (2016) ** V. Gopalaswamy *et al.*, GO10.00002, this conference.

Mapping to the data shows that yield degradation from finite beam size in OMEGA implosions is in the power law regime

• Mapping to data yields stronger dependence than 3-D simulations

$$\operatorname{YOC}_{\operatorname{beam}} \approx \left(\frac{R_{\mathrm{b}}}{R_{\mathrm{t}}}\right)^{3}$$

• Large yield degradation comes from finite beam size in the best-performing implosion (shot 96806 with $R_{\rm b}/R_{\rm t}$ = 0.86)

 $YOC_{beam}^{96806} \approx 0.61$

- Note that 3-D simulations do not predict significant degradation in shot 96806 from $R_{\rm b}/R_{\rm t}$
- Other degradation mechanisms or inaccuracies in the 1-D simulations cannot be excluded.

Dependence on Rb/Rt

Dedicated experiments with varying Rb/Rt are planned in November*

* C. A. Thomas et al., BO09.00010, this conference.

Degradation from systematic hydrodynamic instabilities and 1-D physics model deficiencies

Hydrodynamic instabilities, shock mistiming, and decompression during coasting are all possible degradation mechanisms

• Overall degradation from instabilities and other hydro effects

 $YOC_{hydro} = YOC_{H} \left[\alpha_{1D}^{sim}, IFAR_{1D}^{sim}, CR_{1D}^{sim}, t_{coast}^{sim}, t_{shock}^{sim} \right]$

- Adiabat $\alpha \Rightarrow$ stability of short and mid modes
- In-flight aspect ratio (IFAR) ⇒ stability of short wavelength modes
- Convergence ratio \Rightarrow stability of all modes (related to α)
- Coasting time \Rightarrow decompression and deceleration phase instabilities
- Shock breakout time $t_{sb} \Rightarrow$ depends on adiabat and therefore related to both shock mistiming and stability

Best fit to the data occurs when variables are combined and reduced to only three independent parameters

• Reduction of hydrodynamic degradation to three independent parameters

I I E

Mapping to the data reveals a trend of strong yield degradation at low adiabats, high IFAR and high CR

- Mapping to data: YOC_{hydro} $\approx \alpha^{0.8} T_{rel}^{2.6} T_c$
- YOC is maximized at
 - a) high adiabats
 - b) shortest shock breakout time versus implosion time
 - c) minimum coasting
- Best performing 96806 is degraded by hydro effects

 $YOC_{hydro}^{96806} \approx 0.65$

The measured yield of past experiments can be corrected for fill age and $\ell = 1$ degradation for valid comparison to identify true highest-yield shot

These corrections are used to guide future design choices. Increasing the yield of OMEGA best performer to 2×10^{14} (at fixed $\rho R=160 mg/cm^2$) hydroscales to ~0.8MJ of fusion yield at 2MJ of symmetric illumination

Degradation mechanisms and their dependencies are uncovered by the statistical mapping model for OMEGA direct drive implosions

- A physics-based mapping model of the measured fusion yield onto the 1-D simulation database of OMEGA direct-drive implosions reveals dominant and subdominant degradation mechanisms
- The yield degradation with respect to 1-D simulations is quantified and it results from
 - hydrodynamic effects (stability and/or model deficiencies)
 - laser beam to target size ratio (underfilling the target)
 - age of the DT fill and He³ contamination*
 - ℓ = 1 mode from mispointing and target offset**
- Using the mapping model, the measured yield of an implosion can be corrected for each degradation mechanism, thereby enabling proper comparison between implosions and guiding target design changes

Current highest-yield implosions with optimum target size, good laser pointing, and short DT fills are predicted to achieve a neutron yield of $\approx 2 \times 10^{14^{***}}$.

- ** O. Mannion, KI02.00001, this conference (invited).
- *** R. Betti et al., BO09.00011, this conference.

Harding, D. R., and W. T. Shmayda. Fusion Science and Technology 63.2 (2013): 125-131. Regan, S. P., et al. Nuclear Fusion 59.3 (2018): 032007.