Measurements of Sound Speed in Iron Shock-Compressed to ~4000 GPa

The sound speed in shock-compressed iron was measured up to 3700 GPa

- At high pressure, the sound speed provides information about thermodynamic derivatives $(c_s^2 = \frac{dP}{d\rho}|_s)$ of the equation of state.
- The bulk sound speed is calculated with the Nonsteady Waves method* from transit times of pressure perturbations in shocked materials.
- Models for the sound speed in shocked iron predict comparable results with these measurements.

J. R. Rygg, G. W. Collins, T. R. Boehly, M. Zaghoo, D. N. Polsin, M. Nakajima,

B. J. Henderson, and L. E. Crandall, M. C. Marshall

University of Rochester

Laboratory for Laser Energetics

D. E. Fratanduono, M. Millot, R. F. Smith, J. H. Eggert, P. M. Celliers, and

Lawrence Livermore National Laboratory

C.A. McCoy

Sandia National Laboratories

Giant Impact Events

 Sound velocity determines the Mach number in giant impact simulations; a higher sound velocity could imply a stronger shock and more vaporization of iron

M. Nakajima, et al.

Experimental Setup

HESTER

Modulations in the laser drive applied uniformly across a sample and reference are used to infer relative sound speed in the shocked samples

*Velocity interferometry system for any reflector **C.A. McCoy et al., J. Appl. Phys. 120, 235901 (2016).

Perturbations in drive pressure travel at the local sound velocity to catch up with the shock front

Transmission coefficients for temporal and amplitude changes can be calculated

for perturbations traversing regions of various states

*D. E. Fratanduono, et al., J. Appl. Phys. 116, 033517 (2014). 7

Technique

HYADES simulations validate the Nonsteady Waves technique to extract sound speed

- A 1d hydrocode provides a simulated shock velocity
- Analysis using the Nonsteady Waves method recovers the sound speed along the Hugoniot

The sound speed was measured in shock-compressed iron to 3700 GPa

UR

The sound speed in shock-compressed iron was measured up to 3700 GPa

- At high pressure, the sound speed provides information about thermodynamic derivatives $(c_s^2 = \frac{dP}{d\rho}|_s)$ of the equation of state.
- The bulk sound speed is calculated with the Nonsteady Waves method* from transit times of pressure perturbations in shocked materials.
- Models for the sound speed in shocked iron predict comparable results with these measurements.

Please email any comments or questions to <u>mhuf@lle.rochester.edu</u>, I will be happy to respond.

