Extreme Atomic Physics at 5- to 100-Gbar Pressures

S. X. Hu

In collaboration with SNL and Prism, we have established an experiment–theorycombined program to understand extreme atomic physics under HED conditions

- Using a high-resolution time-resolved spectroscopy technique, we have conducted spherical implosion campaigns on OMEGA to measure K_{α} and K_{β} emission/absorption of Cu at 5- to 100-Gbar pressures
- Post-processing hydro simulations of these experiments, we could not find a single atomic-physics model giving a full count of the spectroscopic features observed in experiments
- A DFT-based NLTE-modeling code (VERITAS) is under development, in which the *ab-initio* calculations provide the essential shifts and transitions of K_α from emission to absorption during heat-wave propagation

DFT-based NLTE modeling would offer a self-consistent understanding of exotic atomic physics at extreme HED conditions.

SNL: Sandia National Laboratories HED: high energy density DFT: density-functional theory NLTE: non local thermodynamic equilibrium

IIE

Collaborators

P. M. Nilson and V. V. Karasiev

University of Rochester, Laboratory for Laser Energetics

S. B. Hansen Sandia National Laboratories

T. Walton and I. E. Golovkin Prism Computational Sciences

How atomic physics might be altered at extreme HED conditions remains to be understood

- Traditional continuum-lowering models have been called into question from both experimental measurements^{1,2} and first-principles calculations^{3,4}
- The opacity of iron is found to be higher than any model prediction in experiments for dense plasma conditions^{5,6}
- A self-consistent picture between the measured K_{α} and K_{β} emission/absorption and atomic-physics modeling is still lacking⁷

- ²D. J. Hoarty *et al.*, Phys. Rev. Lett. <u>110</u>, 265003 (2013).
- ³S. X. Hu, Phys. Rev. Lett. <u>119</u>, 065001 (2017).
- ⁴S. B. Hansen et al., Phys. Plasmas <u>25</u>, 056301 (2018).
- ⁵J. E. Bailey et al., Nature <u>517</u>, 56 (2015).
- ⁶T. Nagayama et al., Phys. Rev. Lett. <u>122</u>, 235001 (2019).
- ⁷S. X. Hu et al., "Extreme Atomic Physics at Peta-Pascals Probed by
- Time-Resolved Spectroscopy," to be submitted to Nature Physics.

¹O. Ciricosta *et al.*, Phys. Rev. Lett. <u>109</u>, 065002 (2012).

Experimental campaigns using time-resolved spectroscopy have been performed on OMEGA with spherical implosions to understand extreme atomic physics up to ~10 Gbar

We have applied *Spect3D* to post-process hydro-simulations with different atomic-physics models to compare with experiments

No single model gives all of the K_{α}/K_{β} emission and absorption features observed in experiments!

Ab-initio simulations using DFT have been performed to understand the experimental observations

A DFT-based multi-band non-LTE modeling code ("*VERITAS*") is under development to gain a self-consistent understanding of extreme atomic physics at HED conditions

$$-n_i \sum_{j \neq i}^{N_L} W_{ij} + \sum_{j \neq i}^{N_L} n_j W_{ji} = 0, \text{ (steady state)}$$
$$\mu \frac{\mathrm{d}I(r, n, v)}{\mathrm{d}z} = \eta(r, n, v) - \chi(r, n, v)I(r, n, v)$$

- The above coupled NLTE kinetic modeling can be solved for the self-consistent radiation field and state populations
- Instead of using a traditional atomic-physics model to calculate the Einstein coefficients (rates W_{ij}) for bound-bound and bound-free transitions, we extract them from DFT simulations!

Outlook for future work

- Refining the experimental analyses to obtain calibrated timing and spectral resolution while making the DFT-based multiband NLTE-code "VERITAS" operational
- Using VERITAS to post-process LILAC/DRACO simulations to obtain timeresolved x-ray spectra and image for direct comparison with experiments, thereby helping to identify the deficient in traditional atomic-physics models
- Designing future experiments to probe the recently DFT-predicted interspecies radiative transitions* with a double-shell platform**

**S. X. Hu *et al.*, Phys. Rev. E <u>100</u>, 063204 (2019).

^{*}S. X. Hu *et al.*, Nat. Commun. <u>11</u>, 1989 (2020).

Summary/Conclusions

In collaboration with SNL and Prism, we have established an experiment-theorycombined program to understand extreme atomic physics under HED conditions

- Using a high-resolution time-resolved spectroscopy technique, we have conducted spherical implosion campaigns on OMEGA to measure K_{α} and K_{β} emission/absorption of Cu at 5- to 100-Gbar pressures
- Post-processing hydro simulations of these experiments, we could not find a single atomic-physics model giving a full count of the spectroscopic features observed in experiments
- A DFT-based NLTE-modeling code (VERITAS) is under development, in which the *ab-initio* calculations provide the essential shifts and transitions of K_α from emission to absorption during heat-wave propagation

DFT-based NLTE modeling would offer a self-consistent understanding of exotic atomic physics at extreme HED conditions.

SNL: Sandia National Laboratories HED: high energy density DFT: density-functional theory NLTE: non local thermodynamic equilibrium

IIE

