Optical Spectroscopy Measurements of Decaying Shocks in Transparent Crystals

B. Henderson University of Rochester Laboratory for Laser Energetics

CHESTER

62nd Annual Meeting of the American Physical Society Division of Plasma Physics November, 2020

2

SOP: Streaked Optical Pyrometer

We have used a time-resolved optical spectrometer (SOP-Spec) to perform temperature measurements in shocked transparent media

- SOP-Spec measures optical emission (450-700 nm) from the target chamber; a linear transmission spectrometer module exchanges spatial resolution ('standard SOP') for spectral resolution.
- This diagnostic can perform temperature measurements in transparent media
 without an emissivity correction
- SOP-Spec is the first of a suite of planned optical diagnostics for OMEGA-EP

T. R. Boehly, M. Zaghoo, J. R. Rygg, D. N. Polsin, X. Gong, L. Crandall, M. Huff, M. K. Ginnane, and G. W. Collins

> University of Rochester Laboratory for Laser Energetics

> > S. Ali and P. M. Celliers

Lawrence Livermore National Laboratory

SOP-Spec provides a crucial framework for optical spectroscopy diagnostics at LLE

- Measurements of temperature typically use an 'integrated brightness' method, requiring assumptions of the material's optical properties at high temperature
 - Measuring the Planck spectrum directly allows us to determine temperature without an emissivity correction
- Developing an optical spectrometer that couples to the Rochester Optical Streak System (ROSS) was needed for a host of new diagnostics at LLE
- Several permanent optical diagnostics are now planned for OMEGA-EP including: streaked optical pyrometry w/ spectrometer (SOP-Spec), white light reflectance system, streaked Raman spectroscopy

Motivation

Design

Thermal emission is collected from the target chamber using an optical relay

- A series of achromatic doublets collimate the light at f/3.3 from the target chamber
- A dichroic beamsplitter separates the 532 nm VISAR laser, enabling a simultaneous probe of the shock's velocity

Design

Linear transmission spectroscopy is used to disperse optical emission from the sample

General Specs:

- SOP-Spec collects optical emission in the 450-700 nm band, with a peak efficiency near 550 nm
- 150 grooves/mm transmission diffraction grating
- 200 um input slit sets a spectral resolution of 3.2 nm at best focus
- Coupled to a streak camera with 10
 ps of temporal resolution

SOP-Spec's system response function (SRF) is calibrated by a tungsten lamp

Results

HESTER

Decaying shocks were driven on OMEGA-EP in 200 um α -quartz samples

VISAR records the time-dependent shock velocity

8

Results

FR

Decaying shocks were driven on OMEGA-EP in 200 um α -quartz samples

SOP-Spec collects thermal emission from the decaying shock

A spectrum is extracted from SOP-Spec images using the SRF

• The recorded spectrum is expected to take the form of Planck's Law:

$$V = \frac{2hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{k_b T \lambda}} - 1}$$

- In HED experiments, the peak in the Planck spectrum is located at extremely short wavelengths, so we measure the slope of the spectrum to the right of the peak
- An emissivity correction is not required to measure temperature from these spectrums!

Results

The emission spectrum is fit with Planck's Law to determine temperature

* J. Ruby, "Bayesian Inference of Energy Transfer in Gigabar Convergent Experiments", VI01 11

The LLE HEDP group has a suite of planned optical diagnostics for OMEGA-EP

Streaked Optical Spectrometer (SOP-Spec)

- Collects optical radiation in the 450-700 nm band
- Ideal for temperature measurements and searching for optical signals associated with high-pressure chemistry
- Spectral resolution of 1-3 nm, depending on slit size
- Temporal resolution of 10-100 ps, depending on sweep
- B. Henderson, RSI, 2021 in prep.

White Light Reflectometer

- Uses white light generated in a liquid cell pumped by a 50-fs Nd:YAG laser
- Will probe broadband efficiency of reflecting surfaces at high pressure
- Uses a CMOS detector for high efficiency and 0.5 ns temporal resolution
- B. Henderson, PRB, 2021 in prep.

Streaked Raman Spectrometer

- Uses a 532 nm probe to stimulate Raman scattering in samples
- Will sample vibrational modes in dynamically-compressed crystals, and unambiguously identify phase transitions
- Spectral resolution of 1-3 nm
- Temporal resolution of 10-100 ps

We have used a time-resolved optical spectrometer (SOP-Spec) to perform temperature measurements in shocked transparent media

- SOP-Spec measures optical emission (450-700 nm) from the target chamber; a linear transmission spectrometer module exchanges spatial resolution ('standard SOP') for spectral resolution.
- This diagnostic can perform temperature measurements in transparent media
 without an emissivity correction
- SOP-Spec is the first of a suite of planned optical diagnostics for OMEGA-EP
- SOP-Spec will become a qualified diagnostic, available to anyone performing experiments on the OMEGA-EP laser system, in early 2021

UR :