Cross-Beam Energy Transfer Saturation
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Crossed-beam energy transfer (CBET) saturation by ion heating was
measured and found to be consistent with kinetic linear CBET theory
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e Previous experiments have observed CBET saturation but have lacked the measurements to understand the CBET
saturation mechanism
e Low phase velocity (vp, = 5 vinn) CBET experiments observed early (<100 ps) and late time (>100 ps) CBET saturation
— Thomson-scattering measurements measure up to x10 increase in ion temperature
— Linear kinetic CBET theory reproduced energy transfer experiments when including the measured ion heating

e Particle-In-Cell (PIC) simulations identify the ion heating mechanism
— lon trapping leads to increased ion temperature
— Increased ion temperature limits ion wave growth and saturates CBET

e High phase velocity (vpn = 8 vy n) CBET experiments showed pump depletion and no evidence of CBET saturation
— Thomson-scattering measured no enhanced ion heating

— Linear kinetic CBET theory reproduced measured energy transfer when including pump depletion and measured
plasma conditions

Despite all the nonlinear physics, the linear CBET model works
remarkably well provided the correct plasma conditions are used
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Linear CBET theory predicts the transfer of energy
between laser beams in a plasma
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e Two beams (m, n) which are frequency mismatched (wy,, w,)
cross in a plasma and form a beat wave (k, wy) k =k, —k,

— When this beat wave is resonant with the ion-acoustic
mode significant amounts of energy can be transferred
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e The gain as seen by the probe beam ‘m’ is constant for any
probe intensity

— Amplitude of ion waves does depend on probe intensity
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CBET saturation has been observed in past experiments but insufficient
diagnostic tools have limited a physics understanding
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e The first 2-beam frequency mismatched CBET experiment was in a gas- (26 mm dia
bag target’ and CBET saturation was first observed with foil targets23 Frone poam

— Plasma conditions predicted using LASNEX simulations
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e CBET experiments in a gas jet target demonstrated saturation at high
probe intensities, but no mechanism was identified* Turnbull4

:‘;ﬂ Polarimetry

S i o
’,Vg,:z_/uy” exp (ikyénL/ng

— Plasma conditions were measured with Thomson-scattering but did Thompson sateing. A
not measure ion temperatures Interferometry [

ap ™

r \
. . . . Upe Ugge
e Recent well controlled gas jet experiments at small ion-acoustic wave s 04} Uns
. . @-""— \/O Uyse
amplitudes have demonstrated that when non-Maxwellian electron v @,_g _____ o
. . . . . . Probe
distribution functions are included, linear CBET theory reproduces the aj ™ 77 Wollaston prism

measured energy transfer®

"R. K. Kirkwood et al. Phys. Rev. Lett. 76, 2065 (1996)

i ifi i i i i 2R. K. Kirkwood et al. Phys. Rev. Lett. 89, 215003 (2002
Well characterized plasma conditions are essential in validating sl ey

I I I 4 D. Turnbull et al. Phys. Rev. Lett. 118, 015001 (2017)
CBET theory and underStandlng Saturatlon phySICS 5D. T::r?bt:ll :t :I. Pla}s’na ?’\;lyseControI. Fusion 60, 0545°7(2018)
6 D. Turnbull et al. Nat. Physics 16, 181-185 (2020}

=Esr 7\ UNIVER SITY of 1 X
B9 ROCHESTE ME




The OMEGA LPI platform enables experimental variables to be
Isolated by characterizing and controlling plasma conditions
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e (Gas-Jet

e TOP9 Laser

e Diagnostics:
— Transmitted Beam Diagnostic (TBD)
— Thomson-Scattering System (TSS)

e Pump Beams Gas-Jet

Pump Beams
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The gas-jet system produced a uniform underdense plasma target
on the Omega laser system
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e Afast valve with a supersonic nozzle releases a 1 mm-scale plume of 55% H, and 45% N, gas
e The gas-jet plume is illuminated by 9 Omega heater beams using large phase plates (~850 pm diam.)
e Uniformity in plasma conditions was confirmed using imaging Thomson scattering
9 Post-heater Thomson Spectrum Plasma Conditions
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The Tunable OMEGA port 9 (TOP9) laser is wavelength tunable over 3 nm
to allow CBET in a quasi-stationary plasma target
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e The TOP9 beam is redshifted ~0.3 nm to resonantly beat with the unshifted pump beams in the gas-jet plasma target

e TOP9 had a small spot size (~160 um diam.) and had linear s-polarization w.r.t crossing plane
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The CBET interaction was diagnosed using the transmitted beam
diagnostic (TBD) and the Thomson-scattering system (TSS)
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e TBD measures power in the TOP9 beam before and after the CBET interaction

e TSS measures time-resolved Thomson spectra scattered from every beam used ——
in the experiment k4 p
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The 351 nm pump beams were used in two configurations: low- and
high- phase velocity
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Low phase velocity CBET experiments demonstrated diminishing gains with
increasing TOP9 intensity and time-dependent saturation effects
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Thomson fits of the ion-acoustic wave feature indicates significant
ion heating during the CBET interaction
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Accounting for increased ion temperatures in the high-intensity TOP9 shots brings
linear CBET theory into agreement with measured gain data
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PIC simulations demonstrate ion trapping and heating effects
on experiment relevant time scales
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e Single-pump, low phase velocity (6 = 99°) configuration using VPIC
e Early time (~10 ps) PIC ion distributions show trapping along the driven IAW k-vector

e Late time (~100 ps) PIC shows anisotropic heating of the ion distribution
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High phase velocity CBET experiments demonstrated diminishing gain
with increasing TOP9 beam intensity
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Time-resolved plasma conditions and pump depletion effects

account for the measured time-resolved gain
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Relatively low velocity trapped ions mainly heated the CBET volume

for low phase velocity CBET experiments
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Trapped ions were mostly free to leave the CBET volume and
heat the surrounding plasma in high phase velocity experiments




Summary/Conclusions

Crossed-beam energy transfer (CBET) saturation by ion heating was
measured and found to be consistent with kinetic linear CBET theory
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e Previous experiments have observed CBET saturation but have lacked the measurements to understand the CBET
saturation mechanism

e Low phase velocity (vp, = 5 vy n) CBET experiments observed early (<100 ps) and late time (>100 ps) CBET saturation
— Thomson-scattering measurements measure up to x10 increase in ion temperature
— Linear kinetic CBET theory reproduced energy transfer experiments when including the measured ion heating

e Particle-In-Cell (PIC) simulations identify the ion heating mechanism
— lon trapping leads to increased ion temperature
— Increased ion temperature limits ion wave growth and saturates CBET

e High phase velocity (vp,, = 8 vy, n) CBET experiments showed pump depletion and no evidence of CBET saturation
— Thomson-scattering measured no enhanced ion heating

— Linear kinetic CBET theory reproduced measured energy transfer when including pump depletion and measured
plasma conditions

These results highlight the importance of coupling laser-plasma instability
physics into hydrodynamic models to accurately predict the plasma conditions
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Beam geometry and plasma density were modified in a low-gain
campaign to minimize pump-depletion effects
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Pump depletion limited the effective pump beam intensity which

diminished gains as the TOP9 intensity was increased

UR

e Gain in the TOP9 beam is proportional to the available pump intensity

G | Iprobe _

exp(G)
pump Iprobe,O

e The impact of pump depletion on the effective gain is calculated using
the Tang formula*
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Gain in the TOP9 beam was measured while varying the
wavelength detuning and holding intensity constant
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when measured plasma conditions are used




