Magnetic-Field Effect on Rayleigh-Taylor and Darrieus-Landau Instabilities

F. Garcia-Rubio University of Rochester Laboratory for Laser Energetics 62nd Annual Meeting of the APS Division of Plasma Physics Remote November 9-13, 2020

Summary/Conclusions

- The sharp boundary model (SBM) analysis yields a dispersion relation that is only governed by
 - Froude number: $Fr \gg 1$,
 - Critical-to-ablation front density ratio: $D_{R} = n_c/n_a \ll 1$.
- The self-generated B field helps to stabilize the RT instability.
- The self-generated B field does not affect the DL instability.

Collaborators

Riccardo Betti

University of Rochester Laboratory for Laser Energetics Department of Mechanical Engineering Department of Physics and Astronomy

Hussein Aluie

University of Rochester Department of Mechanical Engineering

Javier Sanz Recio Universidad Politécnica de Madrid School of Aerospace Engineering

The magnetic field is generated during the development of the ARTI, modifying its dynamics

B-Field generation

• The magnetic field is generated due to the **Biermann-Battery** effect:

$$\frac{\partial \overrightarrow{B}}{\partial t} \sim \frac{\nabla p \times \nabla n}{n^2} \propto \frac{\partial \overrightarrow{\omega}}{\partial t}$$

- Its generation comes hand in hand with vorticity.
- Most of the B field is generated at the **ablation front** and **convected** towards the hot coronal plasma.

B-Field Effect

• In the linear regime, the B-field effect on the hydrodynamics lies in the **Righi-Leduc** term:

$$\overrightarrow{q}_{RL} \sim -\frac{T^4}{n} \overrightarrow{B} \times \nabla T$$

The B field modifies the ablation rate. Depending on its sign, it can be enhanced or diminished

We consider a full expansion structure that undergoes RT and DL instabilities

- Instabilities:
 - Rayleigh-Taylor: Short wavelengths.
 - Darrieus-Landau: Long wavelengths.

 Perturbed mass and momentum fluxes at the ablation front

> $n_0u_1 + n_1u_0 = fk$ Mass $2u_1 + n_1u_0^2 + p_1 = qk^{3/5}$ Momentum

Dispersion relation

$$\gamma^{2} + \gamma k u_{a} \left(1 + f\right) - k^{2} u_{a}^{2} f - k g \left(1 - q k^{3/5} \frac{u_{a}^{2}}{g L_{a}^{2/5}}\right) = 0$$

We exploit the fact that the hot plasma is quasi-stationary to derive the stabilization mechanisms

$$\frac{\gamma L_a}{u_a} = \sqrt{\frac{kL_a}{\frac{\mathsf{Fr}}{\mathsf{RT}}} - \underbrace{q_1 \left(kL_a\right)^{8/5}}_{\mathsf{Dyn. \ pressure}} - \underbrace{\frac{1 + f_1 + q_2}{2} kL_a}_{\mathsf{Conv. \ stabilization}}$$

Stabilization mechanisms

- Stabilization by dynamic pressure:
 - Conservative restoring force.
 - Stationary momentum flux $q_1 \sim p_1/k^{3/5} \sim \omega/k^{8/5}$.
 - Cutoff $k_c L_a \sim \mathrm{Fr}^{-5/3}$.
- Stabilization by convection:
 - Non-conservative damping.
 - Stationary mass flux f_1 and nonsteady momentum flux q_2 .
 - Cutoff $k_c L_a \sim \text{Fr}^{-1/2}$.

Dynamic pressure becomes the main stabilization mechanism

Analysis of the dynamic pressure term

- The eigenvalues q_1, q_2, f_1 depend on $ks_{c0} \sim \frac{kL_a}{\left(n_c/n_a\right)^{5/2}}$
- The momentum flux / pressure / vorticity changes sign at $\label{eq:ks} ks_{c0} \approx 0.5$
- For $ks_{c0} < 0.5$, **vorticity** is negative and becomes the driving mechanism of the **DL** instability.
- The effect of the **B field** does not depend upon any parameter.
- It enhances the rocket effect increasing the perturbed pressure.

Dispersion relation in an ICF context

- The dispersion relation is governed by **two parameters**:
 - Froude number ${\rm Fr}\gg 1$
 - Density ratio $D_{R} = n_c/n_a \ll 1$
- A particular **combination** characterizes qualitatively the spectrum:

- For $D_R Fr^{2/3} \ll 1$, the spectrum is **RT dominated**.
- For $D_R Fr^{2/3} \gg 1$, the **DL instability** becomes important.

Dispersion relation in an ICF context

- The dispersion relation is governed by **two parameters**:
 - Froude number ${\rm Fr}\gg 1$
 - Density ratio $D_{R} = n_{c}/n_{a} \ll 1$
- A particular **combination** characterizes qualitatively the spectrum:

- For $D_R Fr^{2/3} \ll 1$, the spectrum is **RT dominated**.
- For $D_R Fr^{2/3} \gg 1$, the **DL instability** becomes predominant.

Dispersion relation in an ICF context

- The dispersion relation is governed by **two parameters**:
 - Froude number ${\rm Fr}\gg 1$
 - Density ratio $D_{R} = n_c/n_a \ll 1$
- A particular **combination** characterizes qualitatively the spectrum:

- For $D_R Fr^{2/3} \ll 1$, the spectrum is **RT dominated**.
- For $D_R Fr^{2/3} \gg 1$, the **DL instability** becomes predominant.

Dispersion relation in the DL regime $D_R Fr^{2/3} \gg 1$

Summary of regimes for the dispersion relation

Summary/Conclusions

- The sharp boundary model (SBM) analysis yields a dispersion relation that is only governed by
 - Froude number: $Fr \gg 1$,
 - Critical-to-ablation front density ratio: $D_{R} = n_c/n_a \ll 1$.
- The self-generated B field helps to stabilize the RT instability.
- The self-generated B field does not affect the DL instability.

Analysis of the convective stabilization term

- Convective stabilization is positive for every wavenumber.
- The **B-field** enhances this effect. It is more significant for q_2 .

Darrieus-Landau limit $ks_{c0} \ll 1$ considering non-isobaric effects

Taking into account non-isobaric effects modify notably the scaling laws in the DL limit

