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Summary/Conclusions

• The sharp boundary model (SBM) analysis yields a dispersion relation that is only 
governed by  

• Froude number: , 

• Critical-to-ablation front density ratio: . 

• The self-generated B field helps to stabilize the RT instability. 

• The self-generated B field does not affect the DL instability.

Fr ≫ 1

DR = nc /na ≪ 1
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• In the linear regime, the B-field effect on the hydrodynamics lies in 
the Righi-Leduc term: 
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The magnetic field is generated during the development of the ARTI, modifying its dynamics

⃗q RL ∼ −
T 4

n
⃗B × ∇T

Biermann Battery Righi - Leduc

Thermal gradients

B field generation Isothermal line

∇T
⃗B.⃗q RL

• The magnetic field is generated due to the Biermann-Battery effect: 

• Its generation comes hand in hand with vorticity. 

• Most of the B field is generated at the ablation front and convected 
towards the hot coronal plasma.

∂ ⃗B
∂t

∼
∇p × ∇n

n2
∝

∂ ⃗ω
∂t

B-Field generation B-Field Effect
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The B field modifies the ablation rate. Depending on its sign, it can be enhanced or diminished

Stabilizing configuration: Ablation is enhancedDestabilizing configuration: Ablation is diminished
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We consider a full expansion structure that undergoes RT and DL instabilities

• Perturbed mass and momentum fluxes at the 
ablation front

Dispersion relation 

γ2 + γkua (1 + f) − k2u2
a f − kg (1 − qk3/5 u2

a

gL2/5
a ) = 0
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• Instabilities:  

• Rayleigh-Taylor: Short wavelengths. 

• Darrieus-Landau: Long wavelengths.
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We exploit the fact that the hot plasma is quasi-stationary to derive the stabilization mechanisms

q = q1 + γ
q2

k3/5
+ O (γ2)

f = f1 + γ
f2

k3/5
+ O (γ2)

Quasistationary Nonsteady 

Mass

Momentum

Stabilization mechanisms

• Stabilization by dynamic pressure: 

• Conservative restoring force. 

• Stationary momentum flux . 

• Cutoff . 

• Stabilization by convection: 

• Non-conservative damping. 

• Stationary mass flux  and nonsteady momentum flux . 

• Cutoff .

q1 ∼ p1/k3/5 ∼ ω /k8/5

kcLa ∼ Fr−5/3

f1 q2

kcLa ∼ Fr−1/2

Dynamic pressure becomes the main stabilization mechanism

γLa

ua
=

kLa

Fr⏟
RT

− q1 (kLa)8/5

Dyn. pressure

−
1 + f1 + q2

2
kLa

Conv. stabilization
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Analysis of the dynamic pressure term
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DL ARTI

γLa

ua
=

kLa

Fr⏟
RT

− q1 (kLa)8/5

Dyn. pressure

−
1 + f1 + q2

2
kLa

Conv. stabilization

• The eigenvalues  depend on: 

• The momentum flux / pressure / vorticity changes sign at 

• For , vorticity is negative and becomes the driving 

mechanism of the DL instability. 

• The effect of the B field does not depend upon any parameter. 

• It enhances the rocket effect increasing the perturbed pressure. 

q1, q2, f1

ksc0 < 0.5

ksc0 ∼
k La

(nc /na)5/2

ksc0 ≈ 0.5
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Dispersion relation in an ICF context
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DRFr2/3 = 0.11

Fr = 50

• The dispersion relation is governed by two parameters: 

• Froude number  

• Density ratio  

• A particular combination characterizes qualitatively the 
spectrum:

Fr ≫ 1

DR = nc /na ≪ 1

• For , the  spectrum is RT dominated. 

• For , the DL instability becomes important. 

DRFr2/3 ≪ 1

DRFr2/3 ≫ 1
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Dispersion relation in an ICF context
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Dispersion relation in an ICF context
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Dispersion relation in the DL regime DRFr2/3 ≫ 1
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Summary of regimes for the dispersion relation

F. García-Rubio, R. Betti, J. Sanz, and H. Aluie.  

Self-Consistent Theory of the Darrieus-Landau and Rayleigh-Taylor 
Instabilities with Self-Generated Magnetic Fields. 

To be published in Physics of Plasmas. 
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Summary/Conclusions

• The sharp boundary model (SBM) analysis yields a dispersion relation that is only 
governed by  

• Froude number: , 

• Critical-to-ablation front density ratio: . 

• The self-generated B field helps to stabilize the RT instability. 

• The self-generated B field does not affect the DL instability.

Fr ≫ 1

DR = nc /na ≪ 1
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Analysis of the convective stabilization term
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γLa

ua
=

kLa

Fr⏟
RT

− q1 (kLa)8/5

Dyn. pressure

−
1 + f1 + q2

2
kLa

Conv. stabilization

• Convective stabilization is positive for every wavenumber. 

• The B-field enhances this effect. It is more significant for .q2
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Darrieus-Landau limit  considering non-isobaric effectsksc0 ≪ 1

��-� ��-� ����� ����� �����
����

-����

-����

-����

-���	

��


��
�����

����������

• The scaling laws in the DL limit with non-isobaric effects:

q1 = − 5.8 (ksc0)11/15

f1 = − 0.49 (ksc0)1/3

q1 = − 1.4 (ksc0)2/5

f1 = ksc0

• The isobaric analysis performed in Sanz et al. PoP 2006:

Mass

Momentum

Mass

Momentum

Taking into account non-isobaric effects modify 
notably the scaling laws in the DL limit


