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Summary
Structured flying focus pulses undergo self-photon acceleration, coherently shifting 
optical driver frequencies into the extreme ultraviolet (EUV)

• Sources of coherent EUV radiation provide novel experimental drivers and diagnostics across many scientific 
disciplines, including high energy density (HED) physics, atomic/molecular/optical (AMO) physics and 
materials science 

• Combining spatiotemporal control with transverse intensity profile shaping increases the achievable 
frequency shift in a photon accelerator by steepening accelerating gradients and matching them to the 
velocity of the upshifted light over many Rayleigh lengths

• A dynamically guided self-photon accelerator can coherently shift 400nm driver light to <100nm wavelengths 
in less than 50μm of interaction length, a distance 200x shorter than previous results using spatiotemporal 
shaping alone*

____________
* A. J. Howard, et. al. Phys. Rev. Lett. 123, 124801 (2019).
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The achievable frequency shift in a conventional photon accelerator is limited by 
short interaction lengths
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The achievable frequency shift in a conventional photon accelerator is limited by 
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The achievable frequency shift in a conventional photon accelerator is limited by 
short interaction lengths
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Spatiotemporal shaping combined with transverse intensity profile shaping traps 
light in sharp accelerating gradients over long distances
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____________
* D. H. Froula, et al., Nat. Photonics 12, 262 (2018).
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Spatiotemporal shaping combined with transverse intensity profile shaping traps 
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Spatiotemporal shaping combined with transverse intensity profile shaping traps 
light in sharp accelerating gradients over long distances
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Ultrashort, structured, flying focus pulses interacting with preionized nitrogen 
gas were simulated using a 2D finite-difference time-domain method 

𝒛 (𝝁𝒎)

𝒚
(𝝁
𝒎
)

𝑰 𝟏𝒆𝟏𝟔𝑾𝒄𝒎!𝟐

𝒏𝒆 𝟏𝒆𝟐𝟏 𝒄𝒎!𝟑
𝟎

𝟓

𝟏𝟎

𝟐. 𝟎

𝟐. 𝟑

𝟐. 𝟔

𝒚
(𝝁
𝒎
)

𝟎

𝟖

𝟎

𝟖

𝟖
𝟎 𝟐𝟎 𝟒𝟎 𝟔𝟎 𝟖𝟎

−

𝟖−



12

Ultrashort, structured, flying focus pulses interacting with preionized nitrogen 
gas were simulated using a 2D finite-difference time-domain method 

𝒛 (𝝁𝒎)

𝒚
(𝝁
𝒎
)

𝑰 𝟏𝒆𝟏𝟔𝑾𝒄𝒎!𝟐

𝒏𝒆 𝟏𝒆𝟐𝟏 𝒄𝒎!𝟑
𝟎

𝟓

𝟏𝟎

𝟐. 𝟎

𝟐. 𝟑

𝟐. 𝟔

𝒚
(𝝁
𝒎
)

𝟎

𝟖

𝟎

𝟖

𝟎 𝟐𝟎 𝟒𝟎 𝟔𝟎 𝟖𝟎 𝟎 𝟖
𝟐. 𝟎

𝟐. 𝟑

𝟐. 𝟔

𝟎

𝟓

𝟏𝟎
𝑰 𝟏𝒆𝟏𝟔𝑾𝒄𝒎!𝟐

𝒏𝒆 𝟏𝒆𝟐𝟏 𝒄𝒎!𝟑

𝒚 (𝝁𝒎)

𝟖−

𝟖−

𝟖−



13

Combined shaping leads to frequency shifting and self-steepening of the ionizing 
beam, sharpening accelerating gradients
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Combined shaping leads to frequency shifting and self-steepening of the ionizing 
beam, sharpening accelerating gradients
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Photon acceleration coherently shifts driver energy from optical to EUV 
frequencies over short interaction lengths
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Photon acceleration coherently shifts driver energy from optical to EUV 
frequencies over short interaction lengths
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Broad bandwidths in the EUV support sub-femtosecond pulses that can be 
isolated through spectral filtering
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Summary/Conclusions

• Sources of coherent EUV radiation provide novel experimental drivers and diagnostics across many scientific 
disciplines, including high energy density (HED) physics, atomic/molecular/optical (AMO) physics and 
materials science 

• Combining spatiotemporal control with transverse intensity profile shaping increases the achievable 
frequency shift in a photon accelerator by steepening accelerating gradients and matching them to the 
velocity of the upshifted light over many Rayleigh lengths

• A dynamically guided self-photon accelerator can coherently shift 400nm driver light to <100nm wavelengths 
in less than 50μm of interaction length, a distance 200x shorter than previous results using spatiotemporal 
shaping alone*

Structured flying focus pulses undergo self-photon acceleration, coherently 
shifting optical driver frequencies into the extreme ultraviolet (EUV)

An optimized photon accelerator could provide an efficient source 
of coherent EUV radiation and intense, isolated, sub-fs pulses

____________
* A. J. Howard, et. al. Phys. Rev. Lett. 123, 124801 (2019).


