Dynamically Guided Self-Photon Acceleration
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Structured flying focus pulses undergo self-photon acceleration, coherently shifting
optical driver frequencies into the extreme ultraviolet (EUV)
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e Sources of coherent EUV radiation provide novel experimental drivers and diagnostics across many scientific

disciplines, including high energy density (HED) physics, atomic/molecular/optical (AMO) physics and
materials science

e Combining spatiotemporal control with transverse intensity profile shaping increases the achievable

frequency shift in a photon accelerator by steepening accelerating gradients and matching them to the
velocity of the upshifted light over many Rayleigh lengths

e A dynamically guided self-photon accelerator can coherently shift 400nm driver light to <100nm wavelengths
in less than 50um of interaction length, a distance 200x shorter than previous results using spatiotemporal
shaping alone*

* A.J. Howard, et. al. Phys. Rev. Lett. 123, 124801 (2019).

UNIVERSITY




Collaborators

UR
LLE

J. P. Palastro*, D. Ramsey**, T. T. Simpsont, D. Turnbull and D. H. Froula

University of Rochester

Laboratory for Laser Energetics

* MRO01.00001 : Laser-Plasma Interactions Driven by Spatiotemporally Structured Light Pulses

** J0O04.00009 : Vacuum Acceleration of Electrons in a Dynamic Laser Pulse

t NOO08.00001 : Nonlinear Spatiotemporal Control of Laser Intensity

ROCHESTE



The achievable frequency shift in a conventional photon accelerator is limited by
short interaction lengths
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The achievable frequency shift in a conventional photon accelerator is limited by
short interaction lengths
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Spatiotemporal shaping combined with transverse intensity profile shaping traps
light in sharp accelerating gradients over long distances

uR
Chromatic LLE
Aberration

Chirped :
Pulse I
> ‘ I

I

>
I
) [
- ~ I
|
|
I e
|

Space (Z) sp-
|

4—Time (t)

* D. H. Froula, et al., Nat. Photonics 12, 262 (2018).
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Spatiotemporal shaping combined with transverse intensity profile shaping traps
light in sharp accelerating gradients over long distances
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Ultrashort, structured, flying focus pulses interacting with preionized nitrogen
gas were simulated using a 2D finite-difference time-domain method
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Ultrashort, structured, flying focus pulses interacting with preionized nitrogen
gas were simulated using a 2D finite-difference time-domain method
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Combined shaping leads to frequency shifting and self-steepening of the ionizing
beam, sharpening accelerating gradients
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Combined shaping leads to frequency shifting and self-steepening of the ionizing
beam, sharpening accelerating gradients
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Combined shaping leads to frequency shifting and self-steepening of the ionizing
beam, sharpening accelerating gradients
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Photon acceleration coherently shifts driver energy from optical to EUV
frequencies over short interaction lengths

UR

LLE

Energy Spectral Density (arb.)

1
107°f
e
zZz=40um
i —Incident
L * ---Gaussian FF |
"""""" Structured FF
10712 : ! !
30 130 230 330 430

A (nm)

UUUUUUUUUU

Bl ROCHESTER




Photon acceleration coherently shifts driver energy from optical to EUV
frequencies over short interaction lengths
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Broad bandwidths in the EUV support sub-femtosecond pulses that can be
isolated through spectral filtering
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Broad bandwidths in the EUV support sub-femtosecond pulses that can be
isolated through spectral filtering
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Broad bandwidths in the EUV support sub-femtosecond pulses that can be
isolated through spectral filtering
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Summary/Conclusions

Structured flying focus pulses undergo self-photon acceleration, coherently
shifting optical driver frequencies into the extreme ultraviolet (EUV)
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e Sources of coherent EUV radiation provide novel experimental drivers and diagnostics across many scientific
disciplines, including high energy density (HED) physics, atomic/molecular/optical (AMO) physics and
materials science

e Combining spatiotemporal control with transverse intensity profile shaping increases the achievable

frequency shift in a photon accelerator by steepening accelerating gradients and matching them to the
velocity of the upshifted light over many Rayleigh lengths

e A dynamically guided self-photon accelerator can coherently shift 400nm driver light to <100nm wavelengths
in less than 50um of interaction length, a distance 200x shorter than previous results using spatiotemporal
shaping alone*

An optimized photon accelerator could provide an efficient source

of coherent EUV radiation and intense, isolated, sub-fs pulses

* A.J. Howard, et. al. Phls. Rev. Lett. 123, 124801 ‘2019'.




