Dynamically Guided Self-Photon Acceleration

Summary

Structured flying focus pulses undergo self-photon acceleration, coherently shifting optical driver frequencies into the extreme ultraviolet (EUV)

- Sources of coherent EUV radiation provide novel experimental drivers and diagnostics across many scientific disciplines, including high energy density (HED) physics, atomic/molecular/optical (AMO) physics and materials science
- Combining spatiotemporal control with transverse intensity profile shaping increases the achievable frequency shift in a photon accelerator by steepening accelerating gradients and matching them to the velocity of the upshifted light over many Rayleigh lengths
- A dynamically guided self-photon accelerator can coherently shift 400nm driver light to <100nm wavelengths in less than 50µm of interaction length, a distance 200x shorter than previous results using spatiotemporal shaping alone*

0

J. P. Palastro*, D. Ramsey**, T. T. Simpson[†], D. Turnbull and D. H. Froula

University of Rochester

Laboratory for Laser Energetics

^{*} MR01.00001 : Laser-Plasma Interactions Driven by Spatiotemporally Structured Light Pulses

^{**} JO04.00009 : Vacuum Acceleration of Electrons in a Dynamic Laser Pulse

^{*} NO08.00001 : Nonlinear Spatiotemporal Control of Laser Intensity

Spatiotemporal shaping combined with transverse intensity profile shaping traps light in sharp accelerating gradients over long distances

Spatiotemporal shaping combined with transverse intensity profile shaping traps light in sharp accelerating gradients over long distances

Spatiotemporal shaping combined with transverse intensity profile shaping traps light in sharp accelerating gradients over long distances

Ultrashort, structured, flying focus pulses interacting with preionized nitrogen gas were simulated using a 2D finite-difference time-domain method

Ultrashort, structured, flying focus pulses interacting with preionized nitrogen gas were simulated using a 2D finite-difference time-domain method

Combined shaping leads to frequency shifting and self-steepening of the ionizing beam, sharpening accelerating gradients

, ROCHESTER

Combined shaping leads to frequency shifting and self-steepening of the ionizing beam, sharpening accelerating gradients

Combined shaping leads to frequency shifting and self-steepening of the ionizing beam, sharpening accelerating gradients

Photon acceleration coherently shifts driver energy from optical to EUV frequencies over short interaction lengths

Photon acceleration coherently shifts driver energy from optical to EUV frequencies over short interaction lengths

Broad bandwidths in the EUV support sub-femtosecond pulses that can be isolated through spectral filtering

Broad bandwidths in the EUV support sub-femtosecond pulses that can be isolated through spectral filtering

Broad bandwidths in the EUV support sub-femtosecond pulses that can be isolated through spectral filtering

Structured flying focus pulses undergo self-photon acceleration, coherently shifting optical driver frequencies into the extreme ultraviolet (EUV)

- Sources of coherent EUV radiation provide novel experimental drivers and diagnostics across many scientific disciplines, including high energy density (HED) physics, atomic/molecular/optical (AMO) physics and materials science
- Combining spatiotemporal control with transverse intensity profile shaping increases the achievable frequency shift in a photon accelerator by steepening accelerating gradients and matching them to the velocity of the upshifted light over many Rayleigh lengths
- A dynamically guided self-photon accelerator can coherently shift 400nm driver light to <100nm wavelengths in less than 50µm of interaction length, a distance 200x shorter than previous results using spatiotemporal shaping alone*

An optimized photon accelerator could provide an efficient source of coherent EUV radiation and intense, isolated, sub-fs pulses

UR

