Evaluating the Residual Kinetic Energy in Direct-Drive Cryogenic Implosions on OMEGA

C. J. Forrest **University of Rochester Laboratory for Laser Energetics**

Society Division of Plasma Physics Memphis, TN November 9-13 2020 (virtual)

62nd Annual Meeting of the American Physical

Summary

Efficient conversion of the shell kinetic energy to the internal hot-spot energy is an essential requirement in ICF fusion implosions

- The spectral moments of the neutron distribution emitted from a fusing deuterium-tritium (DT) plasma is used to interpret the hot-spot velocity and temperature of the reactants.
- An isotropic and anisotropic flow can introduce additional broadening of the second moment on the energy distribution of fusion-produced neutrons.*
- Hot-spot residual kinetic energy (RKE) from the presence of anisotropic flow is observed with increasing hot-spot velocity (> 100km/s).

^{*}K. Woo *et al.*, Phys. Plasmas 27, 062702 (2020).

V. Yu. Glebov, V.N. Goncharov, J. P. Knauer, O. Mannion, Z. Mohamed, P. B. Radha, S. P. Regan, R. Shah, C. Stoeckl, and K.M. Woo

University of Rochester Laboratory for Laser Energetics

Motivation

Two different mechanism can introduce broadening on the energy distribution of fusion-produced neutrons used to infer the temperature of the reactants

E23654b

Anisotropic and isotropic flows is a signature of hot-spot residual kinetic energy (RKE) and can be determined since they have a different effect on the DT and DD ion temperatures.

[^]Murphy et al., Rev. Sci. Instrum. 68, 614 (1997).

The DT and DD reactants have different sensitivities with respect to the temperature profile of the hot spot.

^{*}R. Betti et. Al., Physics of Plasmas 9, 2277 (2002)

A generalized forward-fit technique is used to infer the spectral moments of the peak distributions from a neutron-time-of-flight (nTOF) diagnostic

The hot-spot velocity is inferred using 5 different lines-of-sight.

Two highly-collimated line-of-sight allows for accurate measurements of the primary DT and DD neutron distributions.

The forward-fit approach uses a semi-relativistic energy distribution dNdE^{*}.

$$\frac{dN}{dE} = I_0 \exp\left(-\frac{2\overline{E}}{\sigma^2}\left(\sqrt{E}\right)\right)$$

- The line-of-sight S(E)_{los} attenuation and non-linear light output S(E)_{nlo} were modeled using a neutron transport code (MCNP).
- An energy dependent response function R(E,t)^{**} is ٠ required for a more accurate interpretation of the time-of-flight signal in region around the DD peak distribution**.

$$I(t) = c \left[S(E)_{los} S(E)_{nlo} \frac{d}{d} \right]$$

^{*}L. Ballabio, J. Källne, and G. Gorini, Nucl. Fusion 38, 1723 (1998). ^{**}Mohamed et al., Submitted to Journal of Applied Physics. (2020) & GO11.00005.

 $\left(\overline{E} - \sqrt{\overline{E}}\right)^2$,

$\left| \frac{dN}{dE} \frac{dE}{dt} \right| \otimes R(E,t)$

Residual kinetic energy (RKE)^{*} from the presence of isotropic and anisotropic flows can be inferred with the ion temperature from separate lines-of-sight

Unconverted hot-spot kinetic energy does not contribute to the thermal energy of the system.

This effect will manifest itself into the additional broadening of the neutron velocity distribution (RKE $\equiv M_{DT} \sigma_{1,2}^2$) where 1,2 is the LOS.

$$\begin{bmatrix} T_1^{DT} \\ T_1^{DD} \\ T_2^{DT} \\ T_2^{DD} \\ T_2^{DD} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ \alpha & 0.8 & 0.8 & 0 \\ 1 & 1 & 0 & 1 \\ \alpha & 0.8 & 0 & 0.8 \end{bmatrix}$$

 $\alpha = T_{DD}^{th}/T_{DT}^{th}$

 $\begin{bmatrix} T^{th} \\ M_{DT}\sigma_{iso}^2 \end{bmatrix}$ $M_{DT}(\sigma_{aniso}^2)_1$ $M_{DT}(\sigma_{aniso}^2)_2$

^{*}Murphy et al., Phys. Plasmas 21, 072701. (2014).

The observation of large differences in the ion temperatures along separate line-of-sight indicates that RKE is likely due to low-mode asymmetries

The difference in the ion temperature along two different line-of-sight is produced from anisotropic flows in the hot-spot.

$$\frac{T_1^{DT} - T_2^{DT}}{T_1^{DD} - T_2^{DD}} = \frac{M_{DT}}{0.8M_D}$$

This implies,

 $T_1^{DT} - T_2^{DT} > T_1^{DD} - T_2^{DD}$

The residual kinetic energy due to anisotropic flows from two separate lineof-sight increases with the flow velocity of the hot-spot

These results indicate a significant anisotropic flow is observed in OMEGA cryogenic DT implosions.

A limit on the thermal temperature will require all of the available DT and DD ion temperature and hot-spot flow experimental values

KOCHESTER

A more generalize formalization using all available measurements can be used to monitor the entire system.

$$2^{nd} Mo$$

$$T_{los}^{DT} = T^{th} + M_D$$

$$T_{los}^{DD} = \alpha T^{th} + 0.8$$

$$1^{st} Mo$$

$$\Delta V_{los} = 7.35 T_{keV}^{th}$$
= 6 lines-of-sight (P2)

 T_{los}^{DD} = 2 lines-of-sight (P7, H10)

 T_{los}^{DT}

ment

- $DT Var \left[\vec{v} \cdot \hat{d}_{los} \right]$ $8M_{DT} Var \left[\vec{v} \cdot \hat{d}_{los} \right]$

ment

 $+\langle \vec{v}_{km/s}\cdot \hat{d}_{los}\rangle^*$

2,P4,P7,H4,H10,H17) $\Delta V_{los} = 5$ lines-of-sight (P2,P7,H4,H10,H17)

^{*}K. Woo e*t al*., Phys. Plasmas 27, 062702 (2020). O. Mannion, Session KI02: Invited: Inertial Confinement Fusion

Summary/Conclusions

Efficient conversion of the shell kinetic energy to the internal hot-spot energy is an essential requirement in ICF fusion implosions

- The spectral moments of the neutron distribution emitted from a fusing deuterium-tritium (DT) plasma is used to interpret the hot-spot velocity and temperature of the reactants.
- An isotropic and anisotropic flow can introduce additional broadening of the second moment on the energy distribution of fusion-produced neutrons.*
- Hot-spot residual kinetic energy (RKE) from the presence of anisotropic flow is observed with increasing hot-spot velocity (> 100km/s).

E24602

