A New Beam Configuration to Support Both Spherical Hohlraums and Symmetric Direct Drive

A port configuration is proposed that allows both symmetric direct drive and spherical indirect drive to be carried out on the same facility

- This is demonstrated for a minor modification to the Lan design* for octahedral hohlraums
- The uniformity for both direct drive and indirect drive is better than 1%
- The repointing needed for direct drive requires angle shifts of <10°, compared with close to 40° on the National Ignition Facility (NIF); this avoids problems currently experienced with polar drive

Collaborators

W. Y. Wang* and E. M. Campbell University of Rochester Laboratory for Laser Energetics *also LLE Summer High School Research Program

Outline

- Proposed port modifications to the Lan design
- Indirect-drive uniformity
 - use *LORE* viewfactor code
- Direct-drive uniformity
 - use SAGE hydrodynamics code

Lan proposed a design for six-hole spherical ("octahedral") hohlraums*

 All beams enter the laser entrance holes (LEH's) at 55°

- Port map is based on NIF quad size (100 cm) and target chamber diameter (5 m)
- $\phi = 11.25^{\circ}$ allows for in-tank beam dumps
 - * K. Lan et al., Phys. Plasmas <u>21</u>, 010704 (2014). ** L. Jing et al., Nucl. Fusion 57, 046020 (2017).

The proposed design has half the beams entering the LEH's at 60°

- The beams are better spread out for direct drive
- Nonuniform spacing of the eight quads in ϕ avoids crowding near the corners of the cube

The port design allows space for in-tank beam dumps and good diagnostic access

The new view-factor code *LORE* models the octahedral hohlraum in three steps

TC15484

• Obtain a global radiation temperature *T*_R (~244 eV)

In Step 3, *LORE* integrates over all directions to calculate the x-ray flux at each point on the capsule

The uniformity is better than 0.5% rms for all albedos

Parameters from Lan et al.*

- Hohlraum diameter 1.13 cm
- Capsule diameter 0.22 cm
- LEH diameter 0.20 cm
- Case-to-capsule ratio 5.14

NIF shot N190227-001 was chosen to compare the NIF and proposed octahedral geometries for direct drive

UR IIE

The NIF polar-drive geometry exhibits significant issues as the target implodes

Run 6958 TC15490

The deposited energy on the NIF needs to be strongly enhanced on the equator to provide adequate drive in this region

• Time-integrated deposited energy up to 3.3 ns

• All beams have equal energies

Runs 6958, D1118 TC15491

Variations in average center-of-mass velocity are below 1% for the proposed configuration

- Uniformity is expected to improve with
 - optimization of parameters
 - use of 192 beams

Runs 6958, D1118 TC15492

A port configuration is proposed that allows both symmetric direct drive and spherical indirect drive to be carried out on the same facility

- This is demonstrated for a minor modification to the Lan design* for octahedral hohlraums
- The uniformity for both direct drive and indirect drive is better than 1%
- The repointing needed for direct drive requires angle shifts of <10°, compared with close to 40° on the National Ignition Facility (NIF); this avoids problems currently experienced with polar drive

Further direct-drive uniformity improvements can be expected.

