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Summary

• Optimized shaped pulses were used in exploding-pusher experiments on OMEGA: 
one pulse with a tailored rise and the other with a foot pulse

• The optimized pulses are predicted to generate improved yield by means of 
improved timing, greater coupling, and multiple shocks

• The trends in the experimental yields are matched by simulations, which predict 
over a 30% increase with the actual optimized pulses

Novel shaped pulses demonstrate the ability to affect performance in OMEGA 
exploding-pusher implosions
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OMEGA exploding-pusher (XP) implosions were performed using 
shaped laser pulses

• A baseline flattop pulse was compared to two pulse 
shapes optimized with Telios*

• The fill density of 1.7 mg/cm3 means Kn=λii/RHS ~ 0.15

• All designs have (free-fall yield) ~ 0.3× (total yield) 
－ The free-fall yield provides a lower-bound yield 

estimate when the shell is disrupted by 
hydrodynamic instability

Baseline
flattop

Two peak Foot + 
flattop

Vimp (km/s) 703 723 738

RHS (μm) 38 36 35

CR 11.1 11.8 12.1

Free-fall yield, 
YFF (×1011)

2.3 3.1 3.4

Total yield, YTOT 8.4 10.5 11.2

YFF/YTOT (×1011) 28% 30% 30%

10 atm
D2

7.6 μm
CH

424 μm

Motivation: XPs provide an 
imprint-insensitive platform for 

testing LDD modeling.
____________
CR: convergence ratio; RHS: hot-spot radius; Vimp: peak shell implosion speed; LDD: laser direct drive
*J. Delettrez, T. J. B., Collins and C. Ye, Phys Plasmas 26, 062705 (2019).
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In exploding pushers, the yield follows the shock

• In a typical cryogenic implosion, yield is generated as the shell compresses the hot spot

Color contours: normalized log(fusion rate)
Contour lines: |Lp|–1 (μm–1)

Shot 57229*: R0=800 μm 
Kn ~ 0.03, CR ~ 5, YOC ~ 100%

Cryo Shot 90288: R0=430 μm
Kn « 1, CR ~ 16, YOC ~ 40%

XP, flat-top pulse: R0=430 μm
Kn ~ 0.15, CR ~ 12, YOC ~ 50%

Rebound
shock

____________
*A. Shvydky, APS (2010).
YOC: yield over clean

Shock
Shell
edge

La
se

r p
ow

er
 (T

W
)

Time (ns) N
eu

tr
on

 ra
te

 (s
–1

) (
×

10
21

)

LILAC

Time (ns)

R
ad

iu
s 

(μ
m

)

Time (ns)

R
ad

iu
s 

(μ
m

)

Time (ns)

R
ad

iu
s 

(μ
m

)



6

The optimized pulses produce higher yield through multiple mechanisms

• The XP yield scales as Y ~ ni2<σv>t, where t is the 
shock transit time across the hot spot*

• The two-peak shock has a delayed rise to full power, 
which separates the shock and shell, increasing t1

• The foot + flattop pulse generates a second distinct 
shock leading to a stronger primary shock

• Both optimized pulses remove the coasting phase

• The optimized pulses produce a higher shell density, 
which generates a stronger rebound shock and 
increased post-shock ni, Ti, and <σv>

Second 
shock

t

Baseline flattop pulse

Foot + flattop pulse

Rebound 
shock

1See J. A. Marozas et al., LDD 
Tutorial, JT02.00001

____________
*For 5–10 keV, <σv> ~ aT+bT2, equal parts linear and quadratic
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The LILAC yield follows the experimental trend

• All six post-shot simulations model CBET and use a single flux limiter to match all the 
experimental bang times

• A multiple of the LILAC yield, YOC ~ 50%, reproduces well the experimental trend in yield

• If yield reduction is due to shell breakup and reduced ρR, this would indicate comparable shell 
instability among all the shots

Error bars given by rms 
of three nToF detectors

____________
CBET: cross-beam energy transfer
nToF: neutron time-of-flight detector97368
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The experimental pulses qualitatively reproduce elements of the optimized pulses

• The energy and power were below the design values by as 
much as 25% and 20%, respectively

• LILAC simulations indicate the performance is restored when 
these deficits are removed

Power 
starved

Energy
starved

97368
97369

97371
97373

97375
97376

Designed
As-shot97368

97369
97375

97376
97371

97373
97368

97369
97375

97376
97371

97373
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• The bang times agree well except for the foot + flattop pulse, in which post-shot simulations 
underpredict the bang time by ~100 ps

The experimental burn-weighted ion temperatures are comparable to the freefall-
weighted ion temperatures

Flattop
Two-peak Foot+FT

Flattop

Two-peak

Foot+FT

97368
97369

97375
97376

97371
97373
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Two-dimensional DRACO simulations show little performance degradation due to 
hydrodynamic instability

• XPs have large adiabat and shock-induced yield, reducing sensitivity to hydrodynamic instability

Imprint
modes
ℓ ≤ 100

Low 
modes: 
power 
imbalance, 
mistiming

z
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Ion viscosity is a more likely candidate for performance degradation

• Studies by Rosenberg et al. (2014)1 and Atzeni et al. (2019)2 have shown that Kn ~ 0.15 is 
intermediate between the fluid and kinetic regimes, and the observed YOC ~ 50% is typical 
for XPs in this range

• Ion viscosity in this regime reduces return-shock strength, lowering yield and Ti2,3 and could 
account for the observed YOC ~ 50%

____________
1M. J. Rosenberg et al., PRL, 112, 185001 (2014).2S. Atzeni et al., 46th EPS Conf. on Plasma Phys. (2019).
3See also I. Igumenschev, BO09.00005, this conference.

Kn
=λ

ii/R
HS

Radius (μm)
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A yield increase of over 30% is predicted for the optimized pulses relative to the 
flattop baseline pulse

• The requested pulse shapes were simulated 
using the same prescription used to model the 
experimental data

• The yields are uniformly higher than the 
experimental data because 
－ all pulses use the same energy (18 kJ) 

and peak power (28 TW)
－ the pulses are optimally timed for the 

target radius
Flat–top

pulse

Foot + 
flat–top

Two–
peak
pulse
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Summary/Conclusions

Novel shaped pulses demonstrate the ability to affect performance in OMEGA 
exploding-pusher implosions

• Optimized shaped pulses were used in exploding-pusher experiments on OMEGA: 
one pulse with a tailored rise and the other with a foot pulse

• The optimized pulses are predicted to generate improved yield by means of 
improved timing, greater coupling, and multiple shocks

• The trends in the experimental yields are matched by simulations, which predict 
over a 30% increase with the actual optimized pulses

Related talks

• J. A. Marozas, LDD Tutorial, JT02.00001 (Tue PM)
• P. W. McKenty, NIF Contoured-shell XPs, GO09.00008 (Tue AM)
• I. Igumenshchev, Effects of ion viscosity in OMEGA cryo, BO09.00005 (Mon)
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Additional slides
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• The as-shot pulse energy was 8% to 25% below the requested 18 kJ and the peak drive power was low 
for all shots, 22-25 TW instead of the designed 28 TW

• The only pair of shots with equal energy (97369 and 97371) did not have equal peak power, confounding 
comparison

• Shaped pulses of duration ≤ 1 ns are unusual and challenging and growing pains were expected; 
OMEGA System Science has identified a path forward for future experiments

The experimental pulses qualitatively reproduce elements of the optimized pulses but fall short 
on power, energy and uniformity

Requested
As-shot
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The LILAC free-fall yield follows the experimental trend

• The experimental yields lie between the free-fall and total yield, with burn widths comparable to the 
LILAC burn widths, suggesting some contribution to the overall yield from compression of the hot spot 
by the shell
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• Burn widths are typically smaller in simulation than in experiment, 

The foot + flat-top pulse shows a small increase in the burn width

Tim Collins

Experimental data LILAC

Shot 5.4 m nTOF
Yield

12 m nTOF
yield

5.4 m 
Tion
(keV)

12m Tion
(keV)

Burn 
width 
(ps)

Vimp
(km/s)

Peak HS 
press. rho R

Burn 
width 
(ps)

97368 2.48E+11 2.87E+11 7.06 8.31 124 644 9.6 20
97369 2.75E+11 3.25E+11 7.17 7.98 123 662 10.2 20
97371 3.16E+11 4.10E+11 7.15 9.04 121 706 14.9 21
97373 2.93E+11 3.60E+11 7.61 9.05 121 691 14.1 22
97375 2.26E+11 2.45E+11 7.29 8.12 138 671 10.3 19
97376 1.95E+11 2.14E+11 7.83 8.52 134 674 10.6 20


