The Third Line-of-Sight Time-Gated X-Ray Imager for OMEGA DT Cryogenic Implosions

OMEGA Target Chamber

K. Churnetski University of Rochester Laboratory for Laser Energetics 62nd Annual Meeting of the American Physical Society Division of Plasma Physics 9–13 November 2020

UR

A 3-D view of the hot spot is crucial for understanding the evolution of the hot spot and the multidimensional effects that occur during ICF implosions

- OMEGA currently has two time-gated x-ray imagers: a time-resolved Kirkpatrick–Baez x-ray microscope* and the single-line-of-sight, time-resolved x-ray imager (SLOS-TRXI)**
- A time-gated hot-spot x-ray imager is being developed for use on OMEGA as a third line of sight similar to SLOS-TRXI with ≤5-μm spatial and 20-ps temporal resolutions
- 3-D gated hot-spot x-ray imaging will be used to infer the low-mode structure of the hot spot

In the future, stalk and fill tube jets at stagnation will be studied with the third line of sight.

ICF: inertial confinement fusion

* F. J. Marshall et al., Rev. Sci. Instrum. 88, 093702 (2017).

** W. Theobald et al., Rev. Sci. Instrum. 89, 10G117 (2018).

UR IIF

Collaborators

W. Theobald, K. A. Woo, I. Igumenshchev, R. Ejaz, S. T. Ivancic, A. Kish, M. Michalko, R. C. Shah, R. Spielman, and S. P. Regan

University of Rochester Laboratory for Laser Energetics

A. Raymond

General Atomics

P. Bell, A. Carpenter, A. McPhee, C. Trosseille, and D. K. Bradley Lawrence Livermore National Laboratory

> J. D. Hares and A. K. L. Dymoke-Bradshaw Kentech Instruments Ltd.

G. Rochau, L. Claus, and M. Sanchez Sandia National Laboratories

D. Garand

Sydor Technologies

Multidimensional effects on hot-spot formation will be diagnosed with 3-D gated x-ray imaging of the hot-spot plasma

Three-dimensional gated x-ray imaging of the hot spot will use three quasi-orthogonal lines of sight.

LOS: line of sight * I. V. Igumenshchev *et al.*, Phys. Plasmas <u>23</u>, 052702 (2016).

First LOS Time-Gated X-ray Imager

KBframed is a 16-channel Kirkpatrick–Baez (KB) x-ray microscope that provides time-resolved images of the core around stagnation

UR 🔬

Second LOS Time-Gated X-ray Imager

SLOS-TRXI is a fast-gated x-ray camera comprised of an electron pulse-dilation imager and a nanosecond-gated burst-mode hCMOS sensor

Gate width: ~40 ps Image to image: 17 ps to 39 ps Spatial resolution: ~10 μ m Energy range: 4 to 9 keV M_{im} : 12.4×

hCMOS: hybrid complementary metal-oxide semiconductor K. Engelhorn *et al.*, Rev. Sci. Instrum. <u>89</u>, 10G123 (2018); T. J. Hilsabeck *et al.*, Rev. Sci. Instrum. <u>81</u>, 10E317 (2010); W. Theobald *et al.*, Rev. Sci. Instrum. <u>89</u>, 10G117 (2018).

E29368

The 3rd LOS will follow the SLOS-TRXI concept but will have improved spatial ($\leq 5-\mu$ m) and temporal (20-ps) resolutions

Third LOS Time-Gated X-ray Imager

A time-varying electric field on the x-ray photocathode will magnify the image temporally

The 3-D hot-spot x-ray imaging requirements are being developed based on 3-D radiation-hydrodynamic simulations

Preliminary requirements to resolve modes ℓ = 1 to 3 with 3-D view:

- Spatial resolution of 5 to 10 μm (hot-spot diameter ~50 μm)
- Temporal resolution of 20 to 30 ps (burnwidth ~80 ps)
- ≥3 diagnostic lines of sight with absolute reference frames

Machine learning techniques** will be applied in the 3-D data analysis.

- * K. M. Woo et al., Phys. Plasmas <u>25</u>, 052704 (2018); Spect3D, Prism Computational Sciences Inc., Madison, WI 53711. Vislt, Lawrence Livermore National Laboratory, Livermore, CA 94550. J. Delettrez et al., Phys. Rev. A <u>36</u>, 3926 (1987).
- ** B. Zirps et al., "A Platform to Infer the Dominant Mode from Experimental X-Ray Images Using the Deep-Learning Convolution Neural Network," to be submitted.

Images for the third line of sight were post-processed for various spatial resolutions and ℓ modes

K. M. Woo *et al.*, Phys. Plasmas <u>25</u>, 052704 (2018); SPECT3D, Prism Computational Sciences Inc., Madison, WI 53711.

UR LLE

Summary/Conclusions

A 3-D view of the hot spot is crucial for understanding the evolution of the hot spot and the multidimensional effects that occur during ICF implosions

- OMEGA currently has two time-gated x-ray imagers: a time-resolved Kirkpatrick–Baez x-ray microscope* and the single-line-of-sight, time-resolved x-ray imager (SLOS-TRXI)**
- A time-gated hot-spot x-ray imager is being developed for use on OMEGA as a third line of sight similar to SLOS-TRXI with ≤5-μm spatial and 20-ps temporal resolutions
- 3-D gated hot-spot x-ray imaging will be used to infer the low-mode structure of the hot spot

In the future, stalk and fill tube jets at stagnation will be studied with the third line of sight.

Velocity perturbation is applied at the beginning of the deceleration phase to study the Rayleigh–Taylor (RT) instability

K. M. Woo et al., Phys. Plasmas <u>25</u>, 052704 (2016). K. M. Woo, 57th Annual Meeting of the American Physical Society Division of Plasma Physics, Savannah, GA (2015).

UR

