Analysis of Techniques to Infer Hot-Spot Mix using Absolute X-ray Emission for OMEGA Direct-Drive Layered Implosions

OMEGA Cryo Implosion Scenarios

- Mode 1 (No Mix)
- Mode 1 (Hot-spot Mix Added)

Inferred vs. Actual Mix

- Ice-Block Approx. Model
- 1D Sim Ref. Model
- Actual

Duc Cao
University of Rochester
Laboratory for Laser Energetics

62nd Annual Meeting of the American Physical Society
Division of Plasma Physics
9-13 November 2020
Summary

Accurate hot-spot mix estimates are obtained when using a yield ratio reference Y_v/Y_n from 1D simulations

- We analyzed two methods that infer hot-spot mix using a no-mix estimate of Y_v/Y_n (X-ray/Neutron yield)
 1. Ice-block approximation model\(^1\)
 2. 1D sim. reference approximation model

- In tests where $T_e \neq T_i$, the ice-block approximation model was found to overestimate mix

- In contrast, inferring mix using a Y_v/Y_n reference from 1D simulations not only takes non-equilibrium into account, but also applied well to non-1D scenarios

\(^1\)T. Ma et al., PRL 111, 085004 (2013)
Collaborators

R. Shah, R. Epstein, A. Christopherson, V. Gopalaswamy, S. P. Regan, W. Theobald, and V. N. Goncharov

University of Rochester
Laboratory for Laser Energetics
Our goal is to infer mix in a variety of implosions on OMEGA

- X-ray emission yield Y_ν has a strong Z dependence for fully-ionized plasmas1:

 $$\varepsilon_\nu \propto n_i^2 \left(\frac{\chi_H}{kT_e} \right)^\frac{1}{2} \langle Z \rangle \left[\langle Z^2 g_{FF} \rangle + 2 \left(\frac{\chi_H}{kT_e} \right) \langle Z^4 e^{-\frac{(\chi-\Delta\chi)}{kT}} g_{BF} \rangle \right] e^{-\frac{h\nu}{kT}}; \quad Y_\nu = \int \varepsilon_\nu dV dt$$

- Mix is inferred by seeing how much higher Y_ν,exp is above $Y_\nu(Z=1)$ and back-calculating the resulting $\langle Z \rangle$
 - Requires having an estimate for $Y_\nu(Z=1)$

- We analyzed two methods for approximating $Y_\nu(Z=1)$ to infer mix
 1. Ice-block approximation model2
 2. 1D simulation-reference model

2T. Ma et al., PRL 111, 085004 (2013)
The ice-block approximation model\(^1\) compares a measured yield ratio \(Y_v/Y_n\) to a no-mix, ice-block expectation to infer mix

- Advantage: Ice-block model assumes uniform conditions in hot-spot
- A yield ratio is used so that density, volume, and emission times can be ignored:

\[
\left(\frac{Y_v}{Y_n}\right)_{\text{exp}} = \frac{\left(\frac{Y_v}{Y_n}\right)_{\text{ice-block}}^{*}}{\left(\frac{Y_v}{Y_n}\right)_{\text{ice-block}}^{*}} = \frac{\langle Z \rangle}{g_{H,FF}} \left[\langle Z^2 g_{FF} \rangle + 2 \left(\frac{\chi_H}{kT_e} \right) \langle Z^4 g_{BF} \rangle \right]
\]

\(Z\) dependency is now isolated

\(^1\)T. Ma et al., PRL 111, 085004 (2013)

*Yield formulas use measured \(T_e\) and \(T_i\)
The ice-block approximation model\(^1\) compares a measured yield ratio \(Y_v/Y_n\) to a no-mix, ice-block expectation to infer mix

\[
\left(\frac{Y_v}{Y_n}\right)_\text{exp} = \frac{\left(\frac{Y_v}{Y_n}\right)_\text{ice-block}^{(Z=1)}}{C_0 g_{Fe} e^{-\frac{h\nu_0}{k\langle T_e \rangle}} n_i^2 V \Delta t}{f_D f_T \langle \sigma v \rangle_{DT} n_i^2 V \Delta t}
\]

If no mix in “exp”, yield ratios should be equal and inferred \(\langle Z \rangle\) matches \(Z_H = 1\)

*Yield formulas use measured \(T_e\) and \(T_i\)

\(^1\)T. Ma et al., PRL 111, 085004 (2013)
Ice-block mix model breaks down during non-equilibrium conditions (stronger on OMEGA than on NIF)

Test case (No Mix):

$$\langle Z \rangle = 1$$
$$h\nu = 15 \text{ keV}$$

Larger x-ray emission volume (normalized) compared to neutron volume

$$(\frac{Y_v}{Y_n})_{\text{profile}}$$

$$C_0 e^{-\frac{h\nu_0}{k(T_e)}} \frac{\eta^2 V\Delta t}{\int D_f T(\sigma v) DT}$$

Bad assumption. $$V_v > V_n$$

$$V_i > V_e$$
We can bypass the ice-block model limitations by using a simulation approximation for Y_v/Y_n

- A monotonic relation between Y_n and Y_v exists in simulation
 - Higher implosion velocity groups have slightly different Y_v/Y_n ratio
 - *These ratios account for non-equilibrium effects*

- To exploit these relations for inferring mix, we simply assume:

\[
\left(\frac{Y_v}{Y_n} \right)_{\text{exp}}^{\text{(No Mix) 1D Sim.}} = \left(\frac{Y_v}{Y_n} \right)_{\text{1D Sim.}}
\]

\[\text{Values from 1D cryo simulations database}^1\]

\[\text{Simulated X-ray Emission } Y_v \text{ (hv=15keV) (J/ster/keV)}\]

\[\text{Simulated Neutron Yield } Y_n\]

\[\text{200-400 km/s}\]

\[\text{1E+15}\]

\[1^V. \text{Gopalaswamy et al, Nature 565, 581 (2019)}\]
We can bypass the ice-block model limitations by using a simulation approximation for Y_v/Y_n

- A monotonic relation between Y_n and Y_v exists in simulation
 - Higher implosion velocity groups have slightly different Y_v/Y_n ratio
 - These ratios account for non-equilibrium effects

- To exploit these relations for inferring mix, we simply assume:

$$\left(\frac{Y_v}{Y_n} \right)_{\text{exp (No Mix)}} = \left(\frac{Y_v}{Y_n} \right)_{1D \text{ Sim.}}$$

of similar v_{imp}

[Graph showing simulated X-ray emission and neutron yield with different velocity groups.]

With the no-mix reference for Y_v/Y_n based on 1D simulations, mix can then be inferred in a similar way to ice-block approximation method.

\[
\begin{align*}
\frac{(Y_v/Y_n)_{\text{exp}}}{(Y_v/Y_n)_{\text{Ice-Block (No-Mix)}}} & \approx \frac{\langle Z \rangle}{g_{H,FF}} \left[Z^2 g_{FF} + 2 \left(\frac{X_H}{kT_e} \right) Z^4 g_{BF} \right] \\
\frac{(Y_v/Y_n)_{\text{exp}}}{(Y_v/Y_n)_{1D \, Sim.}} & \approx \frac{\langle Z \rangle}{g_{H,FF}} \left[Z^2 g_{FF} + 2 \left(\frac{X_H}{kT_e} \right) Z^4 g_{BF} \right]
\end{align*}
\]

- Z dependency remains proportional to ratio between yield ratios and assumed uniform.
In tests with single-mode perturbation simulations, 1D reference model can offer more accurate mix estimates for implosions on OMEGA. More tests will be done with stronger and wider variety of perturbations.
Accurate hot-spot mix estimates could be obtained when using a yield ratio reference Y_v/Y_n from 1D simulations

- We analyzed two methods that infer hot-spot mix using a no-mix estimate of Y_v/Y_n (X-ray/Neutron yield)
 1. Ice-block approximation model
 2. 1D simulation-reference model

- In tests where $T_e \neq T_i$, the ice-block approximation model was found to overestimate mix

- In contrast, inferring mix using a Y_v/Y_n reference from 1D simulations not only takes non-equilibrium into account, but also applied well to non-1D scenarios

Summary

1. T. Ma et al., PRL 111, 085004 (2013)