High-Power THz Sources for High-Energy-Density–Physics Applications

G. BRUHAUG,¹ H. G. RINDERKNECHT,¹ M. S. WEI,¹ G. W. COLLINS,¹ J. R. RYGG,¹ Y. E,² K. GARRIGA,² and X. C. ZHANG²

Summary

- THz radiation provides a unique probe and pump^{1,2} for HED matter, but there are currently no available options at large **HED** facilities
- THz probes can provide measurements of dc conductivity, while THz pumps can alter the structural state of materials
- A suite of THz capabilities are being developed for use on **HED and plasma-physics experiments**

HED: high energy density

THz Radiation

 THz radiation typically referrers to electromagnetic radiation that lies between 0.1 and 10 THz¹

- THz radiation is considered "quasi-optical" and can act in ways similar to both microwaves and optical light¹
- THz is currently used as a powerful diagnostic for materials science via time-domain spectroscopy (TDS)¹
- THz-TDS is used for dc measurements of conductivity, a non-contact temperature probe, and a method of identifying chemical structures *in situ*¹

Example THz-TDS Measurement of an Amino Acid

J. Neu and C. A. Schmuttenmaer, J. Appl. Phys. <u>124</u>, 231101 (2018).

- These measurements provide unique measurements into HED materials^{1,3,4}
- Powerful THz sources have recently been developed that can drive nonlinear phenomena in materials^{2,5}
- None of these unique sources or detectors are available at the Laboratory for Laser Energetics

¹University of Rochester, Laboratory for Laser Energetics; ²University of Rochester, Institute of Optics

OMEGA EP THz Source

<u>Comparison of THz Sources²</u>

THz generation source	Peak power (GW)
Nonlinear crystal	5
Particle accelerator	1.5
Air plasma	1
Metal foil plasma	36
OMEGA EP metal foil plasma	~700

- **Recent experiments have shown that high-intensity laser** irradiation of thin foils can generate THz radiation with ~0.1% efficiency^{2,5}
- recent experiments on the Vulcan laser generated ~50 mJ of THz radiation in a single cycle pulse^{2,5}
- The mechanism of generation is two part
 - coherent transition radiation (CTR) is generated when hot electrons exit the target foil

- OMEGA EP in short-pulse mode will be used for THz generation in July of 2021
- the estimated peak yield is ~500 mJ of THz radiation, making OMEGA EP the strongest source of THz radiation available
- the target material, target pulse length, and laser intensity will all be varied to better optimize the generation of THz radiation
- preliminary experiments will be carried out on the MTW laser to better determine target design
- intensity and energy scans will also be performed on MTW to fully study THz source scaling

