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• Spectra exhibit Li satellites, He-like W (2p3/2 " 1s1/2), Y (2p3/2 " 1s1/2), and Heb; 
and Lya and Lyb

• Emission-weighted Te inferred by fi tting Sc spectra to ensemble of single-Te  
spectra synthesized by 0-D calculation in the atomic kinetics model, SCRAM [3] 

Motivation

E29268

• Spectra from non-local-thermodynamic-equilibrium (non-LTE) plasmas 
of open-shell confi gurations are necessary to benchmark and discriminate 
between confl icting atomic models

• Recent buried-layer experiments constrain the evolution of temperature Te 
and ion density ni, and record Ge L-shell spectra

• While atomic kinetics models show good agreement with spectra recorded 
at higher density, they are unable to match data recorded at lower densities

Continuum

Level p

Ground

Energy

“Atom”

A(p, 1)

K(p, q)

K(1, p)

e–

e–

A(q, p) a(p)

Inaccurate collisional or radiative rates will predict inaccurate spectra

E29271

• Non-LTE spectra are determined by 
a balance of competing collisional 
and radiative rates

• State populations are found by solving 
coupled rate equations for population 
n of each state p of all charge states

• The accuracy of the atomic kinetics 
models is dependent on accuracy of 
rate coeffi cients

Rate equation for population 
n of excited level p [4]
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+ = ion level
1 = ground level
K = collisional coeffi cient
A = spontaneous emission rate
a = electron capture rate
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Planar targets produce uniform, uniaxially expanding plasma 
and a quasi steady-state temperature [1]

E29269

• Sc K-shell, Ge L-shell spectra collected by 
elliptical crystal spectrometers (MSPEC) [2] 
and coupled to four-frame x-ray framing 
cameras (XRFC’s)

• Diagnostics are timed coincident with 
isothermal expansion predicted by 1-D 
hydrodynamic simulations (right)

X-ray images of self-emission constraint ni (t)

E29270

• Average ion density ni is inferred 
from time-resolved pinhole images of 
emission parallel and perpendicular 
to the target normal (TN)

• Measurements of height and 
radius from three equivalent shots 
demonstrate the repeatability of the 
platform prior to target disassembly
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Discrepancy can be exploited as a mechanism to infer kinetic rates

E29274

• The buried layer is a viable platform to investigate recombination rates at 
densities ni < 1020 cm−3

• The accuracy of recombination rates will be inferred from the charge-state 
distribution of spectra recorded after the end of the drive pulse

 – recombination at different densities can be probed by varying the duration 
of the drive pulse
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SCRAM accurately predicts the Ge charge-state distribution during 1-D 
expansion, but discrepancy emerges at late time

E29273

• Synthetic Ge L-shell spectra generated at Te, ni inferred from diagnostics agree with 
observed spectra at early times

• After onset of radial expansion near 2.5 ns, synthetic spectra indicate substantial 
recombination, contrary to indications of a steady charge state in observed spectra
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Prominent Li-like Ge lines
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Motivation

E29268

•	Spectra from non-local-thermodynamic-equilibrium (non-LTE) plasmas  
of open-shell configurations are necessary to benchmark and discriminate 
between conflicting atomic models

•	Recent buried-layer experiments constrain the evolution of temperature Te  
and ion density ni, and record Ge L-shell spectra

•	While atomic kinetics models show good agreement with spectra recorded 
at higher density, they are unable to match data recorded at lower densities
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•	 Sc K-shell, Ge L-shell spectra collected by 
elliptical crystal spectrometers (MSPEC) [2] 
and coupled to four-frame x-ray framing  
cameras (XRFC’s)

•	 Diagnostics are timed coincident with 
isothermal expansion predicted by 1-D 
hydrodynamic simulations (right)



X-ray images of self-emission constraint ni (t)

E29270

•	Average ion density ni is inferred 
from time-resolved pinhole images of 
emission parallel and perpendicular 
to the target normal (TN)

•	Measurements of height and 
radius from three equivalent shots 
demonstrate the repeatability of the 
platform prior to target disassembly
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Inaccurate collisional or radiative rates will predict inaccurate spectra

E29271

•	Non-LTE spectra are determined by  
a balance of competing collisional  
and radiative rates

•	State populations are found by solving 
coupled rate equations for population 
n of each state p of all charge states

•	The accuracy of the atomic kinetics 
models is dependent on accuracy of 
rate coefficients

Rate equation for population  
n of excited level p [4]
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+ = ion level
1 = ground level
K = collisional coefficient
A = spontaneous emission rate
a = electron capture rate
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•	Spectra exhibit Li satellites, He-like W (2p3/2 " 1s1/2), Y (2p3/2 " 1s1/2), and Heb; 
and Lya and Lyb

•	Emission-weighted Te inferred by fitting Sc spectra to ensemble of single-Te  
spectra synthesized by 0-D calculation in the atomic kinetics model, SCRAM [3] 
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SCRAM accurately predicts the Ge charge-state distribution during 1-D 
expansion, but discrepancy emerges at late time

E29273

•	Synthetic Ge L-shell spectra generated at Te, ni inferred from diagnostics agree with 
observed spectra at early times

•	After onset of radial expansion near 2.5 ns, synthetic spectra indicate substantial 
recombination, contrary to indications of a steady charge state in observed spectra

Energy (eV) Ion KWiH KWfH

1731 Li 3d5/2 2p3/2

1766 Li 3d3/2 2p1/2

1810 Li 3p1/2 2s1/2

1822 Li 3p3/2 2s1/2

Prominent Li-like Ge lines



Discrepancy can be exploited as a mechanism to infer kinetic rates

E29274

•	The buried layer is a viable platform to investigate recombination rates at 
densities ni < 1020 cm−3

•	The accuracy of recombination rates will be inferred from the charge-state 
distribution of spectra recorded after the end of the drive pulse

	– recombination at different densities can be probed by varying the duration 
of the drive pulse
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