Exploring Pathways to Hydro-Equivalent Ignition on the OMEGA Laser

R. Betti University of Rochester Laboratory for Laser Energetics 62nd Annual Meeting of the APS Division of Plasma Physics 9–13 November 2020

Summary

There are plausible scenarios based on current OMEGA experiments for hydro-scaled ignition at 2 to 6 MJ of symmetric illumination

- A physics-based mapping model used to predict OMEGA implosion performance can identify possible paths to hydro-scaled ignition at multi-MJ of symmetric illumination
- At least three factors can augment implosion performance in hydroscaled targets
 - a faster-than-hydro-scaling dependence on size
 - larger OD targets to improve the energy coupling
 - zooming the laser after the picket
- Combining these three effects, there is a plausible path to hydro-scaled ignition at ~2 to 3 MJ of symmetric illumination (assuming LPI degradation remains at the levels of OMEGA)
- Lowering the adiabat below $\alpha \sim 4$ would greatly improve performance but is not assumed here

Collaborators

V. Gopalaswamy, J. P. Knauer, A. Lees, D. Patel, C. A. Thomas, and W. Theobald Laboratory for Laser Energetics University of Rochester

The best-performing OMEGA implosion achieved a normalized Lawson triple product $\chi \approx 0.174\pm0.01$, hydroscaled to $\chi \approx 0.74$ for ~2 MJ of laser energy

Shot	Yield	ρR (mg/cm²)		x-ray GMXI <i>R</i> (μm)	$ au_{\sf BW}$ (ps)	<i>P</i> (Gbar)	α	CR R _t /R _{GMXI}	<i>E</i> ∟(kJ)
96806	$1.6\pm0.1 imes10^{14}$	160±12 (3 LOS)	4.42±0.3	26.5±1	67±8	65±10	4.2	18	27.25

Normalized Lawson parameter

Hydro-equivalent ignition (definition)

$$\chi \equiv \rho R_{g/cm^2}^{0.61} \left(\frac{0.12Y_{16}}{M_{mg}^{stag}} \right)^{0.34} \qquad \chi_{OMEGA} \equiv 0.174 \pm 0.01$$

$$\chi_{\rm MJ} \equiv \chi_{\rm OMEGA} \left[\frac{E_{\rm L}({\rm MJ})}{E_{\rm L}^{\rm OMEGA}} \right]^{1/3} \Longrightarrow 1$$

Hydro scaling to MJ's of laser energy

$$\chi = \frac{P\tau}{(P\tau)_{\rm ign}(T)} \tau \sim R \sim E_{\rm L}^{1/3}$$

EL	2 MJ	2.5 MJ	3 MJ	6 MJ
X	0.74	0.8	0.84	1.04

LOS: line of sight

Laser pulse shapes hydro scaled up to 2.5 MJ of laser energy are below the 500-TW limit

The mapping model* is a useful tool to uncover trends in the experimental database and identify degradation mechanisms^{**}

Dedicated hydro-scaled experiments* on OMEGA seem to indicate that the areal density scales faster than predicted by hydro scaling

Both the OMEGA implosion database and dedicated hydro-scaled experiments exhibit a size dependence of the fusion yield faster than hydro scaling

C. A. Thomas et al., O09.00010, this conference.
 W. Theobald et al., BO09.00012, this conference.

The faster-than-hydroscaling size scaling could be sufficient for hydro-equivalent ignition at 3 MJ of symmetric illumination

- Possible causes of residual scaling: defects, kinetic effects, radiation preheat, stalk, hot-electron preheat
- Since the origin of this residual size scaling is currently unknown, it is not possible to determine the extent of its validity; a reasonable extrapolation of this residual size scale for another 20%

$$\chi \equiv \rho R_{g/cm^{2}}^{0.61} \left(\frac{0.12Y_{16}}{M_{mg}^{stag}}\right)^{0.34} \left(\frac{E_{L}}{E_{L}^{OMEGA}}\right)^{1/3}$$

$$= \frac{1}{2} \frac{1}$$

$$\chi = (1.2 \times \rho R)^{0.61} \left(\frac{0.12Y_{16} \times 1.2}{M_{\rm mg}^{\rm stag}} \right)^{0.34} \left(\frac{E_{\rm L}}{E_{\rm L}^{\rm OMEGA}} \right)^{1/3}$$

$$1.2 \times R \Rightarrow 1.7 \times E_{L}^{OMEGA} - 47 \text{ J} \xleftarrow{\text{Exceeds OMEGA}}_{\text{laser energy}}$$
$$1.2 \times R \Rightarrow \text{YOC} = 0.52 \qquad (\rho \text{RoC} = 1) \xleftarrow{\text{Limit}}?$$

EL	2 MJ	2.5 MJ	3 MJ	6 MJ
χ without residual scaling	0.74	0.8	0.84	1.04
χ with residual scaling	0.87	0.94	1.0	1.25

TC15580a

Another path to hydro-equivalent ignition is to improve the performance of OMEGA implosions beyond shot 96086: larger shells lead to higher yields

Another path to hydro-equivalent ignition is to improve the performance of **OMEGA** implosions beyond shot 96086: Zooming phase plates lead to higher yields

* I. V. Igumenshchev et al., Phys. Plasmas 23, 052702 (2016). ** V. Gopalaswamy et al., GO10.00002, this conference.

KOCHESTER

1.3

1.55

There are plausible scenarios based on current OMEGA experiments for hydro-scaled ignition at 2 to 6 MJ of symmetric illumination

- A physics-based mapping model used to predict OMEGA implosion performance can identify possible paths to hydro-scaled ignition at multi-MJ of symmetric illumination
- At least three factors can augment implosion performance in hydroscaled targets
 - a faster-than-hydro-scaling dependence on size
 - larger OD targets to improve the energy coupling
 - zooming the laser after the picket
- Combining these three effects, there is a plausible path to hydro-scaled ignition at ~2 to 3 MJ of symmetric illumination (assuming LPI degradation remains at the levels of OMEGA)
- Lowering the adiabat below $\alpha \sim 4$ would greatly improve performance but is not assumed here

