Exploring Pathways to Hydro-Equivalent Ignition on the OMEGA Laser
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There are plausible scenarios based on current OMEGA experiments
for hydro-scaled ignition at 2 to 6 MJ of symmetric illumination
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A physics-based mapping model used to predict OMEGA implosion performance can identify possible
paths to hydro-scaled ignition at multi-MJ of symmetric illumination

At least three factors can augment implosion performance in hydroscaled targets
— a faster-than-hydro-scaling dependence on size

— larger OD targets to improve the energy coupling

— zooming the laser after the picket

Combining these three effects, there is a plausible path to hydro-scaled ignition at ~2 to 3 MJ of
symmetric illumination (assuming LPI degradation remains at the levels of OMEGA)

Lowering the adiabat below a ~ 4 would greatly improve performance but is not assumed here

LPI: laser—plasma instability
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The best-performing OMEGA implosion achieved a normalized Lawson triple
product y ~ 0.174+0.01, hydroscaled to y = 0.74 for ~2 MJ of laser energy
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Laser pulse shapes hydro scaled up to 2.5 MJ of laser energy
are below the 500-TW limit
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The mapping model* is a useful tool to uncover trends in the experimental
database and identify degradation mechanisms™
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Dedicated hydro-scaled experiments* on OMEGA seem to indicate
that the areal density scales faster than predicted by hydro scaling
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Both the OMEGA implosion database and dedicated hydro-scaled experiments
exhibit a size dependence of the fusion yield faster than hydro scaling
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The faster-than-hydroscaling size scaling could be sufficient for
hydro-equivalent ignition at 3 MJ of symmetric illumination
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e Possible causes of residual scaling: defects, kinetic effects, radiation preheat, stalk, hot-electron preheat

e Since the origin of this residual size scaling is currently unknown, it is not possible to determine the
extent of its validity; a reasonable extrapolation of this residual size scale for another 20%
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Another path to hydro-equivalent ignition is to improve the performance
of OMEGA implosions beyond shot 96086: larger shells lead to higher yields
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Another path to hydro-equivalent ignition is to improve the performance of
OMEGA implosions beyond shot 96086: Zooming phase plates lead to higher yields
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Summary/Conclusions

There are plausible scenarios based on current OMEGA experiments
for hydro-scaled ignition at 2 to 6 MJ of symmetric illumination
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A physics-based mapping model used to predict OMEGA implosion performance can identify possible
paths to hydro-scaled ignition at multi-MJ of symmetric illumination

At least three factors can augment implosion performance in hydroscaled targets
— a faster-than-hydro-scaling dependence on size

— larger OD targets to improve the energy coupling

— zooming the laser after the picket

Combining these three effects, there is a plausible path to hydro-scaled ignition at ~2 to 3 MJ of
symmetric illumination (assuming LPI degradation remains at the levels of OMEGA)

Lowering the adiabat below a ~ 4 would greatly improve performance but is not assumed here
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