Exploring Pathways to Hydro-Equivalent Ignition on the OMEGA Laser

R. Betti
University of Rochester
Laboratory for Laser Energetics

62nd Annual Meeting of the APS
Division of Plasma Physics
9–13 November 2020
There are plausible scenarios based on current OMEGA experiments for hydro-scaled ignition at 2 to 6 MJ of symmetric illumination

- A physics-based mapping model used to predict OMEGA implosion performance can identify possible paths to hydro-scaled ignition at multi-MJ of symmetric illumination

- At least three factors can augment implosion performance in hydroscaled targets
 - a faster-than-hydro-scaling dependence on size
 - larger OD targets to improve the energy coupling
 - zooming the laser after the picket

- Combining these three effects, there is a plausible path to hydro-scaled ignition at ~2 to 3 MJ of symmetric illumination (assuming LPI degradation remains at the levels of OMEGA)

- Lowering the adiabat below $\alpha \sim 4$ would greatly improve performance but is not assumed here
Collaborators

V. Gopalaswamy, J. P. Knauer, A. Lees, D. Patel, C. A. Thomas, and W. Theobald

Laboratory for Laser Energetics
University of Rochester
The best-performing OMEGA implosion achieved a normalized Lawson triple product $\chi \approx 0.174 \pm 0.01$, hydroscaled to $\chi \approx 0.74$ for ~2 MJ of laser energy.

<table>
<thead>
<tr>
<th>Shot</th>
<th>Yield</th>
<th>ρR (mg/cm)</th>
<th>T_i (keV)</th>
<th>x-ray GMXI R (μm)</th>
<th>τ_{BW} (ps)</th>
<th>P (Gbar)</th>
<th>α</th>
<th>CR R_l/R_{GMXI}</th>
<th>E_L (kJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>96806</td>
<td>$1.6 \pm 0.1 \times 10^{14}$</td>
<td>160±12 (3 LOS)</td>
<td>4.42±0.3</td>
<td>26.5±1</td>
<td>67±8</td>
<td>65±10</td>
<td>4.2</td>
<td>18</td>
<td>27.25</td>
</tr>
</tbody>
</table>

- **Normalized Lawson parameter**

 $$\chi \equiv \rho R_g^{0.61} \left(\frac{0.12 Y_{16}}{M_{mg}} \right)^{0.34}$$

 $$\chi_{OMEGA} \equiv 0.174 \pm 0.01$$

- **Hydro scaling to MJ’s of laser energy**

 $$\chi = \frac{P_T}{(P_T)_{ign}(T)} \tau \sim R \sim E_L^{1/3}$$

Hydro-equivalent ignition (definition)

$$\chi_{MJ} \equiv \chi_{OMEGA} \left[\frac{E_L(MJ)}{E_L^{OMEGA}} \right]^{1/3} \Rightarrow 1$$

<table>
<thead>
<tr>
<th>E_L</th>
<th>2 MJ</th>
<th>2.5 MJ</th>
<th>3 MJ</th>
<th>6 MJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ</td>
<td>0.74</td>
<td>0.8</td>
<td>0.84</td>
<td>1.04</td>
</tr>
</tbody>
</table>

LOS: line of sight
Laser pulse shapes hydro scaled up to 2.5 MJ of laser energy are below the 500-TW limit.
The mapping model* is a useful tool to uncover trends in the experimental database and identify degradation mechanisms**

\[
\text{Yield}_{\text{exp}} \approx \text{Yield}_{\text{sim}}^{1-D} \cdot \text{YOC}_{\text{hydro}}(\alpha, \text{IFAR}, \text{CR}) \cdot \text{YOC}_{\text{He}^3} \cdot \text{YOC}_{\beta} \cdot \text{YOC}_{\text{res}}
\]

- \(\text{YOC}_{\text{hydro}} \) = degradation from hydro instabilities, shock mistiming, 1-D physics inaccuracies
- \(\text{YOC}_{\text{He}^3} \) = degradation from T decay, \(\text{He}^3 \) contamination, ablator damage from \(\beta \) decay
- \(\text{YOC}_{\beta} \) = degradation from target offset and laser mispointing
- \(\text{YOC}_{\text{beam}} \) = degradation from finite beam size
- \(\text{YOC}_{\text{res}} \) = residual size scaling

\[
\approx \rho R_{\text{sim}}^{1-D} \cdot \rho \text{RoC}_{\text{hydro}}(\text{IFAR}, \text{CR}) \cdot \rho \text{RoC}_{\text{He}^3} \cdot \rho \text{RoC}_{\beta} \cdot \rho \text{RoC}_{\text{res}}
\]
Dedicated hydro-scaled experiments* on OMEGA seem to indicate that the areal density scales faster than predicted by hydro scaling.

\[P = 52 \pm 9 \text{ Gbar} \]

\[P = 65 \pm 10 \text{ Gbar} \]

\[\rho \text{RoC} = \frac{\rho_{\text{exp}}}{\rho_{\text{sim}}^{1-D}} \]

\[\langle \rho \text{RoC} \rangle = 0.83 \]

\[\langle \rho \text{RoC} \rangle = 0.69 \]

* C. A. Thomas et al., O09.00010, this conference.
W. Theobald et al., B09.000012, this conference.
Both the OMEGA implosion database and dedicated hydro-scaled experiments exhibit a size dependence of the fusion yield faster than hydro scaling.

\[\text{Yield}_{\text{exp}} \approx \text{Yield}_{\text{sim}}^{1-D} \text{YOC}_{\text{hydro}}(\alpha, \text{IFAR, CR}) \]\n
\[\text{YOC}_{\text{He}^3} = 1.0 \text{YOC}_{\text{YOC}} \text{YOC}_{\text{res}}. \]

1-D code hydro scaling

Scale invariant

Residual scaling

\[\text{YOC}_{\text{res}} \sim R^{1.04 \pm 0.2}. \]

C. A. Thomas et al., O09.00010, this conference.
W. Theobald et al., B009.00012, this conference.
The faster-than-hydroscaling size scaling could be sufficient for hydro-equivalent ignition at 3 MJ of symmetric illumination

- Possible causes of residual scaling: defects, kinetic effects, radiation preheat, stalk, hot-electron preheat
- Since the origin of this residual size scaling is currently unknown, it is not possible to determine the extent of its validity; a reasonable extrapolation of this residual size scale for another 20%

\[\chi \equiv \rho R^{0.61} \left(\frac{0.12 Y_{16}^{\text{stag}}}{M_{\text{mg}}} \right)^{0.34} \left(\frac{E_l}{E_{\text{OMEGA}}} \right)^{1/3} \]

- Hydro-scaled experiments
- \(\langle \text{YOC} \rangle = 0.43 \)
- \(\text{YOC} \sim R^{0.85} \)
- \(\langle \text{YOC} \rangle = 0.36 \)

\[\chi = (1.2 \times \rho R)^{0.61} \left(\frac{0.12 Y_{16} \times 1.2}{M_{\text{mg}}} \right)^{0.34} \left(\frac{E_l}{E_{\text{OMEGA}}} \right)^{1/3} \]

- \(1.2 \times R \Rightarrow 1.7 \times E_{\text{L}}^{\text{OMEGA}} = 47 \) J
- \(1.2 \times R \Rightarrow \text{YOC} = 0.52 \) \(\rho \text{RoC} = 1 \)

<table>
<thead>
<tr>
<th>(E_L)</th>
<th>2 MJ</th>
<th>2.5 MJ</th>
<th>3 MJ</th>
<th>6 MJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi) without residual scaling</td>
<td>0.74</td>
<td>0.8</td>
<td>0.84</td>
<td>1.04</td>
</tr>
<tr>
<td>(\chi) with residual scaling</td>
<td>0.87</td>
<td>0.94</td>
<td>(\boxed{1.0})</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Exceeds OMEGA laser energy

Limit?

TC15859a
Another path to hydro-equivalent ignition is to improve the performance of OMEGA implosions beyond shot 96086: larger shells lead to higher yields.

\[
\text{Yield}_{\text{exp}} \approx \text{Yield}_{\text{sim}}^{1-D} \text{YOC}_{\text{hydro}}(\alpha, \text{IFAR, CR}) \text{YOC}_{\text{He}^3} \text{YOC}_{\text{He}} \text{YOC}_{\text{res}}
\]

1-D simulated yield increases at larger OD due to better energy coupling. Larger OD's and \(V_{\text{imp}}\) lead to larger IFAR compensated by higher adiabat.

Assuming yield \(2 \times 10^{14}\) and same \(\rho R\):

<table>
<thead>
<tr>
<th>(E_L)</th>
<th>2 MJ</th>
<th>2.5 MJ</th>
<th>3 MJ</th>
<th>6 MJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi) without residual scaling</td>
<td>0.79</td>
<td>0.85</td>
<td>0.90</td>
<td>1.14</td>
</tr>
<tr>
<td>(\chi) with residual scaling</td>
<td>0.94</td>
<td>1.0</td>
<td>1.07</td>
<td>1.35</td>
</tr>
</tbody>
</table>

For \(1010\) OD, \(\alpha = 4.7\), \(V_I = 521\) km/s.

For \(1016\) OD, \(\alpha = 4.9\), \(V_I = 485\) km/s.

For \(1018\) OD, \(\alpha = 5.3\), \(V_I = 503\) km/s.

1060 OD, \(\alpha = 4.2\), \(V_I = 450\) km/s.

Yield corrected for fill age and \(T_i\) asymmetries (\(\ell = 1\)).
Another path to hydro-equivalent ignition is to improve the performance of OMEGA implosions beyond shot 96086: Zooming phase plates lead to higher yields.

\[\text{Yield}_{\text{exp}} \approx \text{Yield}_{\text{sim}}^{1-D} \times \text{YOC}_{\text{hydro}}(\alpha, \text{IFAR, CR}) \times \text{YOC}_{\text{He}}^{3} \times \text{YOC}_{\text{YOC}}^{YOC} = \text{YOC}_{\text{YOC}}^{R_{b}, R_{t}} \times \text{YOC}_{\text{res}} \]

Large loss of yields comes from finite beam size i.e., ratio \(R_{\text{beam}} / R_{\text{target}} \)

3-D ASTER* simulations:** about 50% of the yield loss comes from nonuniformities seeded during the picket (0.8\times smaller beam size is required in ASTER for yield degradation)

\[\text{YOC}_{\text{beam}} = \left(\frac{R_{b}}{R_{t}} \right)^{3.4} = 0.5 \text{ for 1010 \(\mu \)m OD} \]

Zooming after picket (i.e., YOC up 50%)

<table>
<thead>
<tr>
<th>(E_{L})</th>
<th>2 MJ</th>
<th>2.5 MJ</th>
<th>3 MJ</th>
<th>6 MJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi) without residual scaling and 1.5\times yield</td>
<td>0.90</td>
<td>0.97</td>
<td>1.0</td>
<td>1.3</td>
</tr>
<tr>
<td>(\chi) with res scaling and 1.5\times yield</td>
<td>1.07</td>
<td>1.16</td>
<td>1.23</td>
<td>1.55</td>
</tr>
</tbody>
</table>

** V. Gopalaswamy et al., GO10.00002, this conference.
Summary/Conclusions

There are plausible scenarios based on current OMEGA experiments for hydro-scaled ignition at 2 to 6 MJ of symmetric illumination

- A physics-based mapping model used to predict OMEGA implosion performance can identify possible paths to hydro-scaled ignition at multi-MJ of symmetric illumination

- At least three factors can augment implosion performance in hydroscaled targets
 - a faster-than-hydro-scaling dependence on size
 - larger OD targets to improve the energy coupling
 - zooming the laser after the picket

- Combining these three effects, there is a plausible path to hydro-scaled ignition at ~2 to 3 MJ of symmetric illumination (assuming LPI degradation remains at the levels of OMEGA)

- Lowering the adiabat below $\alpha \sim 4$ would greatly improve performance but is not assumed here