Cross-Beam Energy Transfer in Simulations of NIF-Scale Strong Spherical Shock Experiments

K. S. Anderson University of Rochester Laboratory for Laser Energetics

62nd Annual Meeting of the American Physical Society Division of Plasma Physics Memphis, TN 9 – 13 November 2020

DRACO simulations with a pump-depletion CBET model* match the shock trajectories and captures the shape of the shock front

- Solid-sphere laser-coupling experiments were conducted in polar direct drive at the National Ignition Facility (NIF) investigating laser energy coupling with high laser intensity spikes**
- Simulations indicate that CBET reduced the laser absorption during the spike pulse by ~15% at 1x10¹⁵ W/cm² and 2.5x10¹⁵ W/cm²
- CBET changes the shape of the shock front from round to oblate
- The shock trajectories in 1-D simulations are not strongly influenced by hot electrons at the levels observed in experiment

^{*}J. A. Marozas *et al.*, Phys. Rev. Lett. <u>120</u>, 085001 (2018). **S. P. Regan, *et al.*, BO09.00014, this conference

Collaborators

W. Theobald, M. Rosenberg, J. A. Marozas

University of Rochester Laboratory for Laser Energetics

R. H. H. Scott and K. Glize STFC Rutherford Appleton Lab

Shock ignition* (SI) adds a high-intensity spike at the end of the laser pulse to launch a strong shock wave, igniting the precompressed fuel

Laser energy coupling at these high laser intensities is not well characterized

^{*}R. Betti, et al., Phys. Rev. Lett. <u>98</u>, 155001 (2007).

The plasma conditions of these shots are similar to ignition designs for the NIF

	Lower- intensity N190204-003	Higher- intensity N190204-002	SI Point Design (NIF)* (flux-limited thermal, no-CBET)
Average Intensity (10 ¹⁵ W/cm ²)	1.0	2.5	3.4 [†]
Scale length [‡] (μ m) (pole/equator)	330/400	400/420	450 (avg)
T _e (keV)‡	3.2	4.5	8.5

*K. S. Anderson, *et al.*, Phys. Plasmas <u>20</u>, 056312 (2013). †Maximum value of 8.0x10¹⁵ W/cm² in the center of "zoomed" spike beams ‡Simulated (*DRACO*) values at quarter critical, middle of spike pulse.

DRACO simulations with pump-depletion CBET match the experimental shock trajectories well

Analysis of the Equatorial shock position was adversely affected by the stalk

Most of the CBET effect on the shock is at the equator and on the second, high-intensity shock

*Both CBET and No-CBET runs performed with non-local thermal transport

UR

CBET alters the shape of the imploding shock to more oblate

RÖCHESTER

The shape of the shock front is captured well in simulations with CBET

HESTER

The shape of the shock front is captured well in simulations with CBET

ESTER

Hot electrons do not seem to make a significant difference in the shock trajectory

Summary/Conclusions

DRACO simulations with a pump-depletion CBET model* match the shock trajectories and captures the shape of the shock front

- Solid-sphere laser-coupling experiments were conducted in polar direct drive at the National Ignition Facility (NIF) investigating laser energy coupling with high laser intensity spikes**
- Simulations indicate that CBET reduced the laser absorption during the spike pulse by ~15% at 1x10¹⁵ W/cm² and 2.5x10¹⁵ W/cm²
- CBET changes the shape of the shock front from round to oblate
- The shock trajectories in 1-D simulations are not strongly influenced by hot electrons at the levels observed in experiment

