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�3We have used first-principles methods (PIMC, DFT-MD, etc) that fully capture the microscopic physics 
(e.g., ion thermal interaction and atomic shell effects) to calculate the EOS

SUMMARY

References:

‣ We have obtained self-consistent EOS data for ablator materials (CH, B, BN, B4C) over wide T 
(103—108 K), ρ (0.1—100 g/cm3) regimes 

‣ Our predicted Hugoniots agree very well with experiments, and have compression maxima (due 
to K shell ionization) that are significantly sharper than Thomas-Fermi/orbital-free predictions 

‣ Our computed EOS, together with experimental data, set constraints for the construction of EOS 
tables and clarification of their roles in ICF/HED experiments via hydro simulations

CH: Zhang et al., Phys. Rev. E 96, 013204 (2017); J. Chem. Phys. 148, 102318 (2018)  
B: Zhang et al., Phys. Rev. E 98, 023205 (2018) 
BN: Zhang et al., Phys. Rev. B 99, 165103 (2019) 
B4C: Zhang et al., to be published.



FIRST-PRINCIPLES METHODOLOGY 

WE COMBINE QUANTUM-MECHANICAL METHODS TO CALCULATE THE EOS
DFT-MD: for low-T
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PIMC: for high-T

MI
··RI = − ∂E

∂RI
= FI [{RJ}]

Ĥψi(r) = εψi(r)

⟨O⟩ = Z−1 ∫ dRdR′�ρ (R, R′�; β) ⟨R | Ô |R′ �⟩
ρ (R, R′�; β) = ⟨R e−βĤ R′�⟩ e−βĤ = (e−τĤ)

M
, τ = β/M

ρ (R, R′ �; β) = ∫ dR1…dRM−1e
−∑M−1

m=1 Sm

‣ Born-Oppenheimer Approximation – 
Classical Ions
‣ Single-Particle Mean Field Theory, XC
‣ Pseudopotential: rcore, Zval
‣ Plane Wave Basis
‣ Inefficient or Not-applicable at High T

‣ All Particles Treated as Quantum Paths – 
Naturally Include Nuclear Quantum Effects
‣ All-Electron Many-Body Method
‣ Fermionic Sign Problem – Fixed-node 

Approximation 
‣ More Expensive and Less Accurate at Lower T
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RESULTS: EOS

* Isochores shifted apart for clarity 
* LEOS 50: based on Thomas-Fermi theory;  
* Debye: Debye-Hückel model; Fermi: ideal Fermi gas
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|ΔE| < 1.5 Ha/B, |ΔP/P| < 5% 
 Note: 1.5 Hartree/B  5%*Eideal gas≈

OUR APPROACH PRODUCES ACCURATE, SELF-CONSISTENT, WIDE-RANGING EOS
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OUR RECENT DEVELOPMENTS EMPLOY ADDITIONAL METHODS FOR BN & B4C
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OUR RECENT DEVELOPMENTS EMPLOY ADDITIONAL METHODS FOR BN & B4C

* ONCVpw/PAWpw: DFT-MD with ONCV/PAW potentials
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OUR RECENT DEVELOPMENTS EMPLOY ADDITIONAL METHODS FOR BN & B4C

* ONCVpw/PAWpw: DFT-MD with ONCV/PAW potentials; FOE: Fermi-operator expansion; 
ACTEX: activity expansion; MECCA: all-electron Green’s function KKR
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104

105

106

107

108

 0.1  1  10  100  1000

Te
m

pe
ra

tu
re

 (K
)

Density (g/cm3)

104

105

106

107

108

 0.1  1  10  100  1000

ACTEX
PIMC

MECCA
FOE

ONCVpw
PAWpw

* ONCVpw/PAWpw: DFT-MD with ONCV/PAW potentials; FOE: Fermi-operator expansion; 
ACTEX: activity expansion; MECCA: all-electron Green’s function KKR; SQ: spectral quadrature 

B4CBN



RESULTS: EOS
�6
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RESULTS: EOS
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AT THE PARTIALLY IONIZED, WARM DENSE REGIME, DIFFERENT METHODS AGREE TO 3%

* Results plotted relative to the EOS values from SQ 
* Energy differences normalized by the ideal gas values (21kBT/BN)

BN
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Boron CH

1 Gbar=103 Mbar=100 TPa=105 GPa OFMD+QMD: from Hu et al., Phys. Rev. E 92, 043104 (2015).

WE PREDICT HUGONIOTS THAT AGREE WITH EXPT. BUT DIFFER FROM THOMAS-FERMI

�8
RESULTS: HUGONIOT



Boron CH

1 Gbar=103 Mbar=100 TPa=105 GPa OFMD+QMD: from Hu et al., Phys. Rev. E 92, 043104 (2015).

WE PREDICT HUGONIOTS THAT AGREE WITH EXPT. BUT DIFFER FROM THOMAS-FERMI

�8
RESULTS: HUGONIOT



Boron CH

1 Gbar=103 Mbar=100 TPa=105 GPa OFMD+QMD: from Hu et al., Phys. Rev. E 92, 043104 (2015).

WE PREDICT HUGONIOTS THAT AGREE WITH EXPT. BUT DIFFER FROM THOMAS-FERMI

�8
RESULTS: HUGONIOT



SHARPER COMPRESSION MAXIMUM IS DUE TO K SHELL IONIZATION
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B3+

RESULTS: HUGONIOT

Atomic shell effects not included in Thomas-Fermi or orbital-free methods
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OUR DATA SET CONSTRAINTS FOR THE CONSTRUCTION OF ACCURATE EOS TABLES
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BN

‣ LEOS 2150: 
legacy TF model 

‣ X2151: TF (N)
+Purgatorio (B) 

‣ X2152: Purgatorio

Electron 
relativistic 
effect

APPLICATION#1: CONSTRUCTION OF NEW EOS TABLES

QEOS: F(ρ,T) = Ecold(ρ) + Fion(ρ,T) + Fele(ρ,T)
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WE RUN 1D SIMULATIONS TO CLARIFY THE PERFORMANCE SENSITIVITY TO EOS
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EOS Model  
(P multiplier)  

Neutron 
Yield

LEOS 50 (0.8) 2.15×1013

LEOS 50 (1.0) 3.60×1013

LEOS 50 (1.2) 5.70×1013

X52 (1.0) 3.53×1013

GDP 2.14×1013

‣ Variations of L50 pressures by 20% show ~50% change in 
neutron yield. 

‣ X52 gives similar results to L50, substantially narrowing 
the range of EOS-dependent uncertainty in capsule yield 

‣ Important to constrain both pressure and internal 
energy in EOS models  

‣ Using a higher tensile strength material (e.g., B) could 
enable the design of a thinner capsule that is more 
“exploding-pusher like” than plastics

Polar direct-drive exploding pusher expt. 
simulations based on 1D Ares model* 
Capsule thickness: 
  Boron: 6 𝜇m 
  GDP: 18 𝜇m

* Ellison, Whitley, et al., Phys. Plasmas 25, 072710 (2018).

APPLICATION#2: THE EFFECT OF EOS IN HYDROSIMULATIONS



�12SUMMARY
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