WIDE-RANGE EOS OF C- AND B- MATERIALS FROM FIRST PRINCIPLES

Shuai Zhang

University of Rochester Laboratory for Laser Energetics

1 Gbar=10³ Mbar=100 TPa=10⁵ GPa

APS DPP Meeting Fort Lauderdale, FL October 22, 2019

Madison Martin, Rich London, Andrea Kritcher, Joseph Nilsen, Natalie Kostinski, Brian Maddox (Lawrence Livermore National Laboratory) Abhiraj Sharma, Phanish Suryanarayana (Georgia Institute of Technology) Duane D. Johnson, Andrey V. Smirnov (*Ames Laboratory*) Suxing Hu (University of Rochester) Walter Johnson (*University of Notre Dame*)

under Contract No. DE-AC52-07NA27344. (LLNL-PRES-793961)

- Heather Whitley, Lorin Benedict, Lin Yang, Kyle Caspersen, Jim Gaffney, Markus Däne, John Pask, Philip Sterne, Tadashi Ogitsu, Amy Lazicki, Michelle Marshall, Damian Swift,
- Burkhard Militzer, Kevin Driver, François Soubiran (University of California, Berkeley)

This work was in part performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory

2

SUMMARY

We have used first-principles methods (PIMC, DFT-MD, etc) that fully capture the microscopic physics (e.g., ion thermal interaction and atomic shell effects) to calculate the EOS

- $(10^{3}-10^{8} \text{ K}), \rho (0.1-100 \text{ g/cm}^{3}) \text{ regimes}$
- tables and clarification of their roles in ICF/HED experiments via hydro simulations

References:

CH: Zhang et al., Phys. Rev. E 96, 013204 (2017); J. Chem. Phys. 148, 102318 (2018) B: Zhang et al., Phys. Rev. E 98, 023205 (2018) BN: Zhang et al., Phys. Rev. B 99, 165103 (2019) B_4C : Zhang et al., to be published.

• We have obtained self-consistent EOS data for ablator materials (CH, B, BN, B₄C) over wide T

Our predicted Hugoniots agree very well with experiments, and have compression maxima (due to K shell ionization) that are significantly sharper than Thomas-Fermi/orbital-free predictions

Our computed EOS, together with experimental data, set constraints for the construction of EOS

FIRST-PRINCIPLES METHODOLOGY

WE COMBINE QUANTUM-MECHANICAL METHODS TO CALCULATE THE EOS **PIMC: for high-T**

- Born-Oppenheimer Approximation Classical lons
- Single-Particle Mean Field Theory, XC
- Pseudopotential: rcore, Zval
- Plane Wave Basis
- Inefficient or Not-applicable at High T

 $O\rangle = Z^{-1} \int d\mathbf{R} d\mathbf{R}' \rho \left(\mathbf{R}, \mathbf{R}'; \beta\right) \left\langle \mathbf{R} \,|\, \hat{O} \,|\, \mathbf{R}' \right\rangle$ $, \mathbf{R}'; \beta) = \left\langle \mathbf{R} \left| e^{-\beta \hat{H}} \right| \mathbf{R}' \right\rangle \quad e^{-\beta \hat{H}} = \left(e^{-\tau \hat{H}} \right)^{M}, \tau = \beta/M$ $\nabla \rho\left(\mathbf{R},\mathbf{R}';\beta\right) = \int d\mathbf{R}_{1}...d\mathbf{R}_{M-1}e^{-\sum_{m=1}^{M-1}S_{m}}$

- All Particles Treated as Quantum Paths -Naturally Include Nuclear Quantum Effects
- All-Electron Many-Body Method
- Fermionic Sign Problem Fixed-node Approximation
- More Expensive and Less Accurate at Lower T

OUR APPROACH PRODUCES ACCURATE, SELF-CONSISTENT, WIDE-RANGING EOS

Isochores shifted apart for clarity

- LEOS 50: based on Thomas-Fermi theory; *
- Debye: Debye-Hückel model; Fermi: ideal Fermi gas *

OUR APPROACH PRODUCES ACCURATE, SELF-CONSISTENT, WIDE-RANGING EOS

Isochores shifted apart for clarity

- LEOS 50: based on Thomas-Fermi theory; *
- Debye: Debye-Hückel model; Fermi: ideal Fermi gas

OUR RECENT DEVELOPMENTS EMPLOY ADDITIONAL METHODS FOR BN & B4C

OUR RECENT DEVELOPMENTS EMPLOY ADDITIONAL METHODS FOR BN & B4C

* **ONCVpw/PAWpw**: DFT-MD with ONCV/PAW potentials

OUR RECENT DEVELOPMENTS EMPLOY ADDITIONAL METHODS FOR BN & B4C

* ONCVpw/PAWpw: DFT-MD with ONCV/PAW potentials; FOE: Fermi-operator expansion

OUR RECENT DEVELOPMENTS EMPLOY ADDITIONAL METHODS FOR BN & B4C

ONCVpw/PAWpw: DFT-MD with ONCV/PAW potentials; **FOE**: Fermi-operator expansion; **ACTEX**: activity expansion

OUR RECENT DEVELOPMENTS EMPLOY ADDITIONAL METHODS FOR BN & B4C

ONCVpw/PAWpw: DFT-MD with ONCV/PAW potentials; **FOE**: Fermi-operator expansion; **ACTEX**: activity expansion; **MECCA**: all-electron Green's function KKR

OUR RECENT DEVELOPMENTS EMPLOY ADDITIONAL METHODS FOR BN & B4C

ONCVpw/PAWpw: DFT-MD with ONCV/PAW potentials; **FOE**: Fermi-operator expansion; **ACTEX**: activity expansion; **MECCA**: all-electron Green's function KKR; **SQ**: spectral quadrature

OUR RECENT DEVELOPMENTS EMPLOY ADDITIONAL METHODS FOR BN & B4C

ONCVpw/PAWpw: DFT-MD with ONCV/PAW potentials; **FOE**: Fermi-operator expansion; **ACTEX**: activity expansion; **MECCA**: all-electron Green's function KKR; **SQ**: spectral quadrature

AT THE PARTIALLY IONIZED, WARM DENSE REGIME, DIFFERENT METHODS AGREE TO 3%

* Results plotted relative to the EOS values from SQ Energy differences normalized by the ideal gas values ($21k_BT/BN$) *

7

AT THE PARTIALLY IONIZED, WARM DENSE REGIME, DIFFERENT METHODS AGREE TO 3%

* Results plotted relative to the EOS values from SQ Energy differences normalized by the ideal gas values ($21k_BT/BN$) *

WE PREDICT HUGONIOTS THAT AGREE WITH EXPT. BUT DIFFER FROM THOMAS-FERMI

1 Gbar=10³ Mbar=100 TPa=10⁵ GPa

Compression Ratio

OFMD+QMD: from Hu et al., Phys. Rev. E 92, 043104 (2015).

WE PREDICT HUGONIOTS THAT AGREE WITH EXPT. BUT DIFFER FROM THOMAS-FERMI

1 Gbar=10³ Mbar=100 TPa=10⁵ GPa

Compression Ratio

OFMD+QMD: from Hu et al., Phys. Rev. E 92, 043104 (2015).

WE PREDICT HUGONIOTS THAT AGREE WITH EXPT. BUT DIFFER FROM THOMAS-FERMI

1 Gbar=10³ Mbar=100 TPa=10⁵ GPa

Compression Ratio

OFMD+QMD: from Hu et al., Phys. Rev. E 92, 043104 (2015).

SHARPER COMPRESSION MAXIMUM IS DUE TO K SHELL IONIZATION

Compression ratio

Atomic shell effects not included in Thomas-Fermi or orbital-free methods

APPLICATION#1: CONSTRUCTION OF NEW EOS TABLES

OUR DATA SET CONSTRAINTS FOR THE CONSTRUCTION OF ACCURATE EOS TABLES

QEOS: $F(\rho,T) = E_{cold}(\rho) + F_{ion}(\rho,T) + F_{ele}(\rho,T)$

10

60

40

20

APPLICATION#2: THE EFFECT OF EOS IN HYDROSIMULATIONS

WE RUN 1D SIMULATIONS TO CLARIFY THE PERFORMANCE SENSITIVITY TO EOS

EOS Model	Neutron	Varia
(P multiplier)	Yield	neuti
LEOS 50 (0.8)	2.15×10 ¹³	
LEOS 50 (1.0)	3.60×10 ¹³	► X52
LEOS 50 (1.2)	5.70×10 ¹³	the ra
X52 (1.0)	3.53×10 ¹³	
GDP	2.14×10 ¹³	Impo

Polar direct-drive exploding pusher expt. simulations based on 1D Ares model* Capsule thickness: Boron: 6 μ m GDP: 18 μm

* Ellison, Whitley, et al., Phys. Plasmas 25, 072710 (2018).

- ations of L50 pressures by 20% show ~50% change in ron yield.
- gives similar results to L50, substantially narrowing range of EOS-dependent uncertainty in capsule yield

ortant to constrain both pressure and internal energy in EOS models

Using a higher tensile strength material (e.g., B) could enable the design of a thinner capsule that is more "exploding-pusher like" than plastics

11

SUMMARY

We have used first-principles methods (PIMC, DFT-MD, etc) that fully capture the microscopic physics (e.g., ion thermal interaction and atomic shell effects) to calculate the EOS

- $(10^{3}-10^{8} \text{ K}), \rho (0.1-100 \text{ g/cm}^{3}) \text{ regimes}$
- tables and clarification of their roles in ICF/HED experiments via hydro simulations

References:

CH: Zhang et al., Phys. Rev. E 96, 013204 (2017); J. Chem. Phys. 148, 102318 (2018) B: Zhang et al., Phys. Rev. E 98, 023205 (2018) BN: Zhang et al., Phys. Rev. B **99**, 165103 (2019) B₄C: Zhang et al., to be published.

AGNINUTILLUULTILIII

DE-SC0010517, DE-SC0016248, and DE-NA0001859

Blue Waters Computing Project, Livermore Computing

• We have obtained self-consistent EOS data for ablator materials (CH, B, BN, B₄C) over wide T

Our predicted Hugoniots agree very well with experiments, and have compression maxima (due to K shell ionization) that are significantly sharper than Thomas-Fermi/orbital-free predictions

Our computed EOS, together with experimental data, set constraints for the construction of EOS

Thank you!

