WIDE-RANGE EOS OF C- AND B- MATERIALS FROM FIRST PRINCIPLES

Shuai Zhang
University of Rochester
Laboratory for Laser Energetics

Shuai Zhang
University of Rochester
Laboratory for Laser Energetics

1 Gbar=10^3 Mbar=100 TPa=10^5 GPa

Burkhard Militzer, Kevin Driver, François Soubiran (University of California, Berkeley)

Abhiraj Sharma, Phanish Suryanarayana (Georgia Institute of Technology)

Duane D. Johnson, Andrey V. Smirnov (Ames Laboratory)

Suxing Hu (University of Rochester)

Walter Johnson (University of Notre Dame)

This work was in part performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. (LLNL-PRES-793961)
We have used first-principles methods (PIMC, DFT-MD, etc) that fully capture the microscopic physics (e.g., ion thermal interaction and atomic shell effects) to calculate the EOS

- We have obtained self-consistent EOS data for ablator materials (CH, B, BN, B₄C) over wide \(T \) \((10^3\text{–}10^8 \text{K}) \), \(\rho \) \((0.1\text{–}100 \text{ g/cm}^3) \) regimes
- Our predicted Hugoniots agree very well with experiments, and have compression maxima (due to K shell ionization) that are significantly sharper than Thomas-Fermi/orbital-free predictions
- Our computed EOS, together with experimental data, set constraints for the construction of EOS tables and clarification of their roles in ICF/HED experiments via hydro simulations

References:

B₄C: Zhang et al., to be published.
FIRST-PRINCIPLES METHODOLOGY

WE COMBINE QUANTUM-MECHANICAL METHODS TO CALCULATE THE EOS

DFT-MD: for low-T

\[M_i \dot{R}_i = -\frac{\partial E}{\partial R_i} = F_i \{ R_j \} \]

\[\hat{H} \psi_i(r) = \epsilon \psi_i(r) \]

PIMC: for high-T

\[\langle O \rangle = Z^{-1} \int dRdR' \rho (R, R'; \beta) \left< R \left| \hat{O} \right| R' \right> \]

\[\rho (R, R'; \beta) = \left< R \left| e^{-\beta \hat{H}} \right| R' \right> e^{-\beta \hat{H}} = \left(e^{-\tau \hat{H}} \right)^M, \tau = \beta / M \]

\[\rho (R, R'; \beta) = \int dR_1 \ldots dR_{M-1} e^{-\sum_{m=1}^{M-1} S_n} \]

- Born-Oppenheimer Approximation – Classical Ions
- Single-Particle Mean Field Theory, XC
- Pseudopotential: rcore, Zval
- Plane Wave Basis
- **Inefficient or Not-applicable at High T**

- All Particles Treated as Quantum Paths – Naturally Include Nuclear Quantum Effects
- All-Electron Many-Body Method
- Fermionic Sign Problem – Fixed-node Approximation
- **More Expensive and Less Accurate at Lower T**
RESULTS: EOS

OUR APPROACH PRODUCES ACCURATE, SELF-CONSISTENT, WIDE-RANGING EOS

- Isochores shifted apart for clarity
- LEOS 50: based on Thomas-Fermi theory;
- Debye: Debye-Hückel model; Fermi: ideal Fermi gas

* Boron $\rho_0 = 2.465$ g/cc
RESULTS: EOS

OUR APPROACH PRODUCES ACCURATE, SELF-CONSISTENT, WIDE-RANGING EOS

* Isochores shifted apart for clarity
* LEOS 50: based on Thomas-Fermi theory;
* Debye: Debye-Hückel model; Fermi: ideal Fermi gas

\[|\Delta E| < 1.5 \text{ Ha}/B, \quad |\Delta P/P| < 5\% \]

Note: 1.5 Hartree/B \(\approx \) 5%*E$_{\text{ideal gas}}$
RESULTS: EOS

OUR RECENT DEVELOPMENTS EMPLOY ADDITIONAL METHODS FOR BN & B4C

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10⁸</td>
<td>1000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10⁹</td>
<td>1000</td>
</tr>
</tbody>
</table>

PIMC
PAWpw

BN

B₄C
OUR RECENT DEVELOPMENTS EMPLOY ADDITIONAL METHODS FOR BN & B\textsubscript{4}C

* ONCV\textsubscript{pw}/PAW\textsubscript{pw}: DFT-MD with ONCV/PAW potentials
OUR RECENT DEVELOPMENTS EMPLOY ADDITIONAL METHODS FOR BN & B4C

* **ONCVpw/PAWpw**: DFT-MD with ONCV/PAW potentials; **FOE**: Fermi-operator expansion
OUR RECENT DEVELOPMENTS EMPLOY ADDITIONAL METHODS FOR BN & B4C

* **ONCVpw/PAWpw**: DFT-MD with ONCV/PAW potentials; **FOE**: Fermi-operator expansion; **ACTEX**: activity expansion
RESULTS: EOS

OUR RECENT DEVELOPMENTS EMPLOY ADDITIONAL METHODS FOR BN & B4C

* **ONCVpw/PAWpw**: DFT-MD with ONCV/PAW potentials; **FOE**: Fermi-operator expansion; **ACTEX**: activity expansion; **MECCA**: all-electron Green’s function KKR
OUR RECENT DEVELOPMENTS EMPLOY ADDITIONAL METHODS FOR BN & B4C

* **ONCVpw/PAWpw**: DFT-MD with ONCV/PAW potentials; **FOE**: Fermi-operator expansion; **ACTEX**: activity expansion; **MECCA**: all-electron Green’s function KKR; **SQ**: spectral quadrature
OUR RECENT DEVELOPMENTS EMPLOY ADDITIONAL METHODS FOR BN & B4C

* **ONCVpw/PAWpw**: DFT-MD with ONCV/PAW potentials; **FOE**: Fermi-operator expansion; **ACTEX**: activity expansion; **MECCA**: all-electron Green’s function KKR; **SQ**: spectral quadrature
RESULTS: EOS

AT THE PARTIALLY IONIZED, WARM DENSE REGIME, DIFFERENT METHODS AGREE TO 3%*

* Results plotted relative to the EOS values from SQ
* Energy differences normalized by the ideal gas values ($21k_B T/BN$)
AT THE PARTIALLY IONIZED, WARM DENSE REGIME, DIFFERENT METHODS AGREE TO 3%.

* Results plotted relative to the EOS values from SQ
* Energy differences normalized by the ideal gas values \((21k_B T/BN)\)
RESULTS: HUGONIOT

WE PREDICT HUGONIOTS THAT AGREE WITH EXPT. BUT DIFFER FROM THOMAS–FERMI

1 Gbar = 10^3 Mbar = 100 TPa = 10^5 GPa

RESULTS: HUGONIOT

WE PREDICT HUGONIOTS THAT AGREE WITH EXPT. BUT DIFFER FROM THOMAS–FERMI

1 Gbar = 10^3 Mbar = 100 TPa = 10^5 GPa

RESULTS: HUGONIOT

WE PREDICT HUGONIOTS THAT AGREE WITH EXPT. BUT DIFFER FROM THOMAS–FERMI

1 Gbar=10^3 Mbar=100 TPa=10^5 GPa
RESULTS: HUGONIOT

SHARPER COMPRESSION MAXIMUM IS DUE TO K SHELL IONIZATION

Atomic shell effects not included in Thomas-Fermi or orbital-free methods
APPLICATION#1: CONSTRUCTION OF NEW EOS TABLES

OUR DATA SET CONSTRAINTS FOR THE CONSTRUCTION OF ACCURATE EOS TABLES

- **LEOS 2150**: legacy TF model
- **X2151**: TF (N) + Purgatorio (B)
- **X2152**: Purgatorio

QEoS:
\[
F(\rho, T) = E_{\text{cold}}(\rho) + F_{\text{ion}}(\rho, T) + F_{\text{ele}}(\rho, T)
\]

Graphs:
- Graph showing Electron relativistic effect.
- Graph showing P(ion)/P(total)*100% according to X2152.

Tables:
- Table showing Density (g/cm³) vs. Temperature (K) for different Compression Ratios.
WE RUN 1D SIMULATIONS TO CLARIFY THE PERFORMANCE SENSITIVITY TO EOS

<table>
<thead>
<tr>
<th>EOS Model (P multiplier)</th>
<th>Neutron Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEOS 50 (0.8)</td>
<td>2.15×10^{13}</td>
</tr>
<tr>
<td>LEOS 50 (1.0)</td>
<td>3.60×10^{13}</td>
</tr>
<tr>
<td>LEOS 50 (1.2)</td>
<td>5.70×10^{13}</td>
</tr>
<tr>
<td>X52 (1.0)</td>
<td>3.53×10^{13}</td>
</tr>
<tr>
<td>GDP</td>
<td>2.14×10^{13}</td>
</tr>
</tbody>
</table>

- Variations of L50 pressures by 20% show ~50% change in neutron yield.
- X52 gives similar results to L50, substantially narrowing the range of EOS-dependent uncertainty in capsule yield.
- Important to constrain both pressure and internal energy in EOS models.
- Using a higher tensile strength material (e.g., B) could enable the design of a thinner capsule that is more “exploding-pusher like” than plastics.

Polar direct-drive exploding pusher expt. simulations based on 1D Ares model*

Capsule thickness:
- Boron: 6 μm
- GDP: 18 μm

SUMMARY

We have used first-principles methods (PIMC, DFT-MD, etc) that fully capture the microscopic physics (e.g., ion thermal interaction and atomic shell effects) to calculate the EOS.

- We have obtained self-consistent EOS data for ablator materials (CH, B, BN, B$_4$C) over wide T (10^3–10^8 K), ρ (0.1–100 g/cm3) regimes.
- Our predicted Hugoniots agree very well with experiments, and have compression maxima (due to K shell ionization) that are significantly sharper than Thomas-Fermi/orbital-free predictions.
- Our computed EOS, together with experimental data, set constraints for the construction of EOS tables and clarification of their roles in ICF/HED experiments via hydro simulations.

References:

B$_4$C: Zhang et al., to be published.

ACKNOWLEDGEMENT

DE-SC0010517, DE-SC0016248, and DE-NA0001859

Blue Waters Computing Project, Livermore Computing

Thank you!