Broadband Smoothing of Laser Pulses for Imprint Reduction in Direct-Drive Inertial Confinement Fusion

J. Wilson SUNY Geneseo University of Rochester Laboratory for Laser Energetics 61st Meeting of the American Physical Society Division of Plasma Physics Fort Lauderdale, FL 21–25 October 2019

Broad-bandwidth lasers can smooth much faster than existing smoothing by spectral dispersion (SSD)

- LLE is developing a prototype broad bandwidth (13 THz) ICF driver (FLUX)
- Broad-bandwidth lasers can mitigate imprint by rapidly moving speckle patterns, smoothing intensity non-uniformities faster than the capsule surface hydrodynamically evolves
- Calculations predict that the rapid smoothing of the FLUX laser reaches a comparable asymptotic contrast to typical SSD

Collaborators

V. N. Goncharov, T. Simpson, D. Ramsey, C. Dorrer, A. Shvydky, D. H. Froula, and J. P. Palastro

> Laboratory for Laser Energetics University of Rochester

In direct-drive inertial confinement fusion (ICF), an ensemble of laser beams drive the compression of a deuterium–tritium fuel capsule

R. S. Craxton et al., Phys. Plasmas 22, 110501 (2015).

The smoothing of large scale nonuniformities introduces small-scale spatial nonuniformities

•

Temporal smoothing can prevent small-scale nonuniformities from imprinting on the capsule

- The shell experiences the intensity nonuniformities convolved over the hydrodynamic response time
- Rapidly moving the speckle pattern effectively smooths the non-uniformities

Contrast = $\frac{\sigma_I}{\langle I \rangle}$ σ_I = standard deviation $\langle I \rangle$ = average intensity

 $\sigma_{rms} = 100 \cdot \text{Contrast}$

Currently the Laboratory for Laser Energetics uses traditional SSD* to temporally smooth OMEGA pulses

- Traditional SSD uses dispersion and frequency modulation to impose temporally varying phase-front modulations across the beam
- Here, we consider 1D multi-frequency-modulated SSD has a bandwidth of 0.066 THz, and is modeled by three frequency modulations

$$\omega(t) = \omega_0 + \sum_{m=1}^3 \delta_m \, \omega_m \cos(\omega_m t)$$

Currently the Laboratory for Laser Energetics uses traditional SSD to temporally smooth OMEGA pulses

- Traditional SSD uses dispersion and frequency modulation to impose temporally varying phase-front modulations across the beam
- Here, we consider 1D multi-frequency-modulated SSD has a bandwidth of 0.066 THz, and is modeled by three frequency modulations

$$\omega(t) = \omega_0 + \sum_{m=1}^3 \delta_m \, \omega_m \cos(\omega_m t)$$

GENESEO

High-bandwidth technologies developed to support short-pulse lasers are being used at LLE to build the next-generation driver for ICF

- The Fourth-generation Laser for Ultra-broadband eXperiments (FLUX) aims to demonstrate laser technologies that would scale to full OMEGA.
- Modeling predicts high-bandwidth will mitigate:
 - Laser plasma instabilities
 - Laser imprint

The FLUX laser will feed the OMEGA LPI Platform

FLUX-p9 experiments will validate ICF modeling with bandwidth

GENESEO

FLUX will use broad-bandwidth light with a bandwidth of 13 THz

• FLUX was modeled by a Gaussian spectrum with with random spectral phase

$$\widehat{A}(\omega) = A_0 \exp\left[-\frac{(\omega-\omega_0)^2}{2\Delta\omega^2} - i\phi(\omega)\right]$$

- All frequencies are present at all times; both the amplitude and phase are modulated in time
- Smoothing requires spatial separation of each frequency in the far-field

Angular dispersion spatially separates each frequency, moving the speckle pattern in the far field

The broad bandwidth of the FLUX laser smooths much faster than typical SSD

Calculations predict that the rapid smoothing of the FLUX laser reaches a comparable asymptotic contrast to typical SSD

Broad-bandwidth lasers can smooth much faster than typical smoothing by spectral dispersion (SSD)

- LLE is developing a prototype broad bandwidth (13 THz) ICF driver (FLUX)
- Broad-bandwidth lasers can mitigate imprint by rapidly moving speckle patterns, smoothing intensity non-uniformities faster than the capsule surface hydrodynamically evolves
- Calculations predict that the rapid smoothing of the FLUX laser reaches a comparable asymptotic contrast to typical SSD

Extra slides

The broad bandwidth of the FLUX laser smooths much faster than typical SSD

Decreasing contrast on a time scale shorter than the hydrodynamic response time can prevent the seeding of hydrodynamic instabilities

• Contrast qualifies the uniformity of the laser profile

Contrast = $\frac{\sigma_1}{\langle I \rangle}$ $\begin{array}{c} \sigma_1 = \text{standard deviation} \\ \langle I \rangle = \text{average intensity} \end{array}$

• A smooth beam has a contrast of zero. A higher contrast is indicative of higher relative differences of the laser profile; the faster the contrast is lowered for a beam profile, the faster a beam is smoothed and imprinting is prevented

GENESEO

Perturbations on the laser create a modulated ablation/shock front seeding

- High-intensity speckles drive higher-pressure shocks, which translates to a variation in sound speed across the shock front
- Pressure deficiencies form behind the fast parts of the shock, while excess pressure builds behind the slow parts
- The resulting transverse pressure gradient causes acceleration modulations that grow the ablation front ripple

Angular dispersion leads to a spatially dependent temporal shift

