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Summary

• LLE is developing a prototype broad bandwidth (13 THz) ICF driver (FLUX)

• Broad-bandwidth lasers can mitigate imprint by rapidly moving speckle patterns, 
smoothing intensity non-uniformities faster than the capsule surface 
hydrodynamically evolves

• Calculations predict that the rapid smoothing of the FLUX laser reaches a 
comparable asymptotic contrast to typical SSD

Broad-bandwidth lasers can smooth much faster 
than existing smoothing by spectral dispersion (SSD)
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• Intense speckles locally heat the 
ablation surface, imprinting small-scale 
density nonuniformities

• The nonuniformities seed hydrodynamic 
instabilities—a major limiting factor on 
performance

In direct-drive inertial confinement fusion (ICF), an ensemble of laser beams 
drive the compression of a deuterium–tritium fuel capsule

____________
R. S. Craxton et al., Phys. Plasmas 22, 110501 (2015).
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• Large-scale nonuniformities can
� seed laser filamentation
� preclude a symmetric 

implosion

• Phase plates smooth large-
scale nonuniformities, but 
introduce small-scale speckles

The smoothing of large scale nonuniformities introduces 
small-scale spatial nonuniformities

Large scale Small scale
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• The shell experiences the intensity non-
uniformities convolved over the hydrodynamic 
response time

• Rapidly moving the speckle pattern effectively 
smooths the non-uniformities

Temporal smoothing can prevent small-scale nonuniformities 
from imprinting on the capsule
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• Traditional SSD uses dispersion and frequency 
modulation to impose temporally varying phase-
front modulations across the beam

• Here, we consider 1D multi-frequency-modulated 
SSD has a bandwidth of 0.066 THz, and is 
modeled by three frequency modulations
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Currently the Laboratory for Laser Energetics uses traditional SSD* 
to temporally smooth OMEGA pulses

________________
* S. Skupsky et al., Journal of Applied Physics 66, 3456
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Currently the Laboratory for Laser Energetics uses traditional SSD 

to temporally smooth OMEGA pulses

• Traditional SSD uses dispersion and frequency 

modulation to impose temporally varying phase-

front modulations across the beam

• Here, we consider 1D multi-frequency-modulated 

SSD has a bandwidth of 0.066 THz, and is 

modeled by three frequency modulations

! " = !$ + &
'()

*
+' !' ,-. !'"

!
"



9

• The Fourth-generation Laser for Ultra-broadband 
eXperiments (FLUX) aims to demonstrate laser 
technologies that would scale to full OMEGA.

• Modeling predicts high-bandwidth will mitigate:
� Laser plasma instabilities
� Laser imprint

High-bandwidth technologies developed to support short-pulse lasers 
are being used at LLE to build the next-generation driver for ICF

The FLUX laser will feed the 
OMEGA LPI Platform

FLUX-p9 experiments will 
validate ICF modeling with 

bandwidth
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• FLUX was modeled by a Gaussian spectrum with 
with random spectral phase
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• All frequencies are present at all times; both the 
amplitude and phase are modulated in time

• Smoothing requires spatial separation of each 
frequency in the far-field

FLUX will use broad-bandwidth light with a bandwidth of 13 THz

#
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Local Frequency

Broad-Bandwidth Amplitude
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• Wavelengths initially overlapped in 
space undergo differential refraction 
and focus to different transverse 
locations in the far field

• For typical SSD, the frequencies 
cycle across the beam

• For the FLUX laser, the frequencies 
have a fixed location across the 
beam

Angular dispersion spatially separates each frequency, 
moving the speckle pattern in the far field

Typical SSD

FLUX laser
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The broad bandwidth of the FLUX laser smooths much faster than typical SSD

1-s runtime = 0.3349 ps simulated
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Calculations predict that the rapid smoothing of the FLUX laser 
reaches a comparable asymptotic contrast to typical SSD
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Summary/Conclusions

Broad-bandwidth lasers can smooth much faster 
than typical smoothing by spectral dispersion (SSD)

• LLE is developing a prototype broad bandwidth (13 THz) ICF driver (FLUX)

• Broad-bandwidth lasers can mitigate imprint by rapidly moving speckle patterns, smoothing 
intensity non-uniformities faster than the capsule surface hydrodynamically evolves

• Calculations predict that the rapid smoothing of the FLUX laser reaches a comparable 
asymptotic contrast to typical SSD
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Extra slides
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The broad bandwidth of the FLUX laser smooths much faster than typical SSD

1-s runtime = 0.3349 ps simulated
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• Contrast qualifies the uniformity of the laser profile

• A smooth beam has a contrast of zero. A higher contrast is indicative of higher 
relative differences of the laser profile; the faster the contrast is lowered for a 
beam profile, the faster a beam is smoothed and imprinting is prevented

Decreasing contrast on a time scale shorter than the hydrodynamic response 
time can prevent the seeding of hydrodynamic instabilities
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• High-intensity speckles drive higher-pressure 
shocks, which translates to a variation in 
sound speed across the shock front

• Pressure deficiencies form behind the fast 
parts of the shock, while excess pressure 
builds behind the slow parts

• The resulting transverse pressure gradient 
causes acceleration modulations that grow 
the ablation front ripple

Perturbations on the laser create a modulated ablation/shock front seeding

____________
R. S. Craxton et al., Phys. Plasmas 22, 110501 (2015).
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Angular dispersion leads to a spatially dependent temporal shift


