Mitigation of Stimulated Raman Scattering with Laser Bandwidth and an External Magnetic Field

Laboratory for Laser Energetics

ROCHESTER

21-25 October 2019

Both laser bandwidth and magnetic fields reduce the reflectivity of stimulated Raman scattering (SRS) for NIF-like plasma conditions

- Multiple speckles can collectively drive SRS and cause bursts in SRS reflectivity
- Laser bandwidth shortens the interaction length of the pump and scattering light, reducing the reflectivity
- Surfatron motion in the combined magnetic field and electrostatic field of SRS-driven plasma waves results in nonlinear damping

A laser bandwidth of ~3 THz or a magnetic field of ~50 T are effective in mitigating convective SRS.

Collaborators

B. J. Winjum, F. S. Tsung, and W. B. Mori University of California at Los Angeles

SRS in NIF-scale plasma conditions was modeled using the OSIRIS PIC simulations

- Simulation parameters
 - immobile ions
 - electron temperature $T_e = 3 \text{ keV}$
 - density scale length $L_n = 0.75$ mm to 1.5 mm
 - $-k\lambda_{
 m D}pprox$ 0.33 at x= 290 $\mu{
 m m}$
 - laser intensity $I = 5 \times 10^{14} \text{ W/cm}^2$
 - f/8 speckle length $L_{\rm s}$ = 180 μ m
 - convective gain $G \approx 1.6$
 - optional external magnetic field

The SRS reflectivity exhibits bursty behavior

- The rise of the reflectivity spikes results from scattered light originating at higher densities, seeding SRS at lower densities, and flattening of the distribution function
- Damping of the plasma waves (through side loss) and pump depletion causes the spikes to decay

^{*} Instantaneous reflectivity is measured at laser entrance and normalized to instantaneous incident laser

UR IIF

As the laser bandwidth increases, the SRS reflectivity transitions from multiple, greater-than-100% spikes to a low nearly constant level

TC15121

Laser bandwidth decreases the effective interaction length for SRS

By reducing the effective interaction length ($L_{eff} < L_{int}$), the laser bandwidth prevents the scattered light from seeding SRS at lower densities

TC15123

• The remaining plasma waves can still trap and accelerate electrons, so the threat of SRS has not been entirely eliminated

An external magnetic field introduces additional damping to the plasma waves* and prevents the flattening of the distribution function

 ^{*} J. M. Dawson *et al.*, Phys. Rev. Lett. <u>50</u>, 1455 (1983);
 V. L. Krasovsky, Plasma Phys. Rep. <u>33</u>, 839 (2007).

The external magnetic field greatly reduces the plasma wave activity

• Laser bandwidth: 3 THz

Both laser bandwidth and magnetic fields reduce the reflectivity of stimulated Raman scattering (SRS) for NIF-like plasma conditions

- Multiple speckles can collectively drive SRS and cause bursts in SRS reflectivity
 - Laser bandwidth shortens the interaction length of the pump and scattering light, reducing the reflectivity
 - Surfatron motion in the combined magnetic field and electrostatic field of SRS-driven plasma waves results in nonlinear damping

A laser bandwidth of ~3 THz or a magnetic field of ~50 T are effective in mitigating convective SRS.

IIE.