Evaluating the Effects of Imperfections in Laser Illumination on Direct-Drive Cryogenic DT Implosions on OMEGA

Neutron time-of-flight (nTOF) spectrum

C. Stoeckl **University of Rochester** Laboratory for Laser Energetics

61st Annual Meeting of the American **Physical Society Division of Plasma Physics** Fort Lauderdale, FL 21-25 October 2019

UR 🔌 LLE Summary

Minimizing low-mode illumination nonuniformities improves the performance of cryogenic implosions

- The performance of direct-drive cryogenic implosions is affected by both low-order modes like target offset and high-order modes like imprint-induced mix
- A large number of optical, x-ray, and nuclear diagnostics were used in a set of experiments to distinguish the effects of different degradation mechanisms
- The velocity of the hot core inferred from nTOF detectors* was used to intentionally offset the target minimizing the low-mode illumination nonuniformities
- With an optimized target offset of ~20 μ m, the target performance improved significantly; yield increased by 2×, areal density by ~50%

^{*} S. Regan et al., YO5.00002, this conference;

O. M. Mannion *et al.*, "A Suite of Neutron Time-of-Flight Detectors for Measurements of Hot Spot Motion in Direct Drive Inertial Confinement Fusion Experiments on OMEGA," to be submitted to Nuclear Instruments and Methods.

Collaborators

T. J. B. Collins, R. Epstein, D. Cao, C. J. Forrest, V. N. Goncharov, I. V. Igumenshchev, R. K. Jungquist, O. M. Mannion, F. J. Marshall, C. Mileham, Z. L. Mohamed, P. B. Radha, S. P. Regan, R. C. Shah, T. C. Sangster, and W. Theobald

> University of Rochester Laboratory for Laser Energetics

M. Gatu Johnson and J. A. Frenje Massachusetts Institute of Technology Plasma Science and Fusion Center

The signatures of low-mode (long-wavelength) and high-mode (short-wavelength) nonuniformities are different

- Sources
- 20-*µ*m offset
- Beam overlap
- 10% imbalance
- 10- μ m rms mispointing
- 5-ps rms mistiming

* I. V. Igumenshchev *et al.,* Phys. Plasmas <u>23</u>, 052702 (2016). ** T. J. B. Collins *et al.*, PO7.00004, this conference.

The expected target performance is determined by the laser pulse shape and the target dimensions

IFAR: in-flight aspect ratio

A number of nuclear and x-ray diagnostics are used in these experiments to assess the performance of these implosions

- yield, ion temperature,

areal density

_

plasma flow, areal density

- MRS: magnetic recoil spectrometer

- SCI: spherical crystal imager
 - ablator mix

XRFC: x-ray framing camera

Backlit radiographs* show no indication of mix from the CH ablator into the DT ice

- DT (54 μm) CH (8 μm) 870-μm diam
- *α* ~ 3.5, IFAR ~ 17
- YOC = 40%, *ρR*/clean > 100%

- DT (61 μm) CH (8 μm) 880-μm diam
- *α* ~ 2.5, IFAR ~ 17;
- YOC = 9%, *ρR*/clean > 92%

^{*} C. Stoeckl et al., Phys. Plasmas <u>24</u>, 056304 (2017).

^{**} C. Stoeckl et al., Rev. Sci. Instrum. 85, 11E501 (2014).

Measurements of the hot-spot motion* were used to generate a new "optimal" target position

Shot	H10 velocity (km/s)	H4 velocity (km/s)	P2 velocity (km/s)		The H10 velocity component was similar to what was previously observed.	
94943	-90	20	75	_		A similar target-position correction as in previous shots was used (~40 µm).
94946	64	-	–19			
94948	5	37	17			The P2 component was near zero, but H10
Н4	H4 P2					target was too far in the $x-y$ plane. The target offset was reduced to 20 μ m.
		H10				Note that this was most likely not the optimal target offset because four distinct lines of sight are required for a full reconstruction.
		Offe	Set * S. Rega O. M. M Drive Ir	an e <i>t al.,</i> Iannion nertial C	, YO5.00002, this co <i>et al</i> ., "A Suite of No confinement Fusion	nference; eutron Time-of-Flight Detectors for Measurements of Hot Spot Motion in Direct Experiments on OMEGA," to be submitted to Nuclear Instruments and Methods.

The nuclear data show a significant performance improvement at the best target position (offset)

E28853

UR LLE

The 22-m nTOF spectra* show clear indications of angular nonuniformites for two of the three shots

Minimizing low-mode illumination nonuniformities improves the performance of cryogenic implosions

- The performance of direct-drive cryogenic implosions is affected by both low-order modes like target offset and high-order modes like imprint-induced mix
- A large number of optical, x-ray, and nuclear diagnostics were used in a set of experiments to distinguish the effects of different degradation mechanisms
- The velocity of the hot core inferred from nTOF detectors* was used to intentionally offset the target minimizing the low-mode illumination nonuniformities
- With an optimized target offset of ~20 μ m, the target performance improved significantly; yield increased by 2×, areal density by ~50%

^{*} S. Regan et al., YO5.00002, this conference;

O. M. Mannion et al., "A Suite of Neutron Time-of-Flight Detectors for Measurements of Hot Spot Motion in Direct Drive Inertial Confinement Fusion Experiments on OMEGA," to be submitted to Nuclear Instruments and Methods.

Backup

The lineouts from the SCI backlit images must be corrected for the backlighter shape

E23005c

