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Summary

• Hot-electron transport in NIF polar-direct-drive (PDD) implosions has been studied 

by comparing hard x-ray (HXR) production in all-plastic implosions with 

multilayered implosions

• The hot-electron deposition profile in the imploding shell has been diagnosed: 

0.28% of laser energy is deposited in the unablated shell 

� 0.1% is deposited in the outer 20% portion

� 0.18% is deposited in the inner 80% of the imploding shell

Hot-electron preheat and energy deposition in the unablated shell have been 

measured in polar-direct-drive implosions on the NIF

Mid-Z layers and laser frequency detuning/bandwidth 

can reduce the hot-electron preheat.*

____________

* R. K. Follett et al., Phys. Rev. Lett. 116, 155002 (2016);

R. K. Follett et al., Phys. Plasmas 26, 062111 (2019).

NIF: National Ignition Facility
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• Fuel compression is negatively affected
if more than ~0.15% of laser energy
is coupled into fuel preheat*

• If electron divergence is large, only ~25%
of electrons intersect the cold fuel **

• Electrons below ~50 keV are stopped
in the ablator

Hot-electron preheat can degrade fuel compression in direct-drive–ignition designs

Motivation

____________
* J. A. Delettrez, T. J. B. Collins, and C. Ye, Phys. Plasmas 26, 062705 (2019).

** B. Yaakobi et al., Phys. Plasmas 20, 092706 (2013). 
LPI: laser–plasma interaction
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Hot-electron transport in NIF PDD implosions was studied by comparing 
HXR between all-plastic and multilayered implosions

Different buried depths and thicknesses of the Ge-doped layer are examined to 
diagnose the hot-electron deposition profile in the imploding shell.
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The energy deposited into a payload can be inferred by subtracting 
the all-CH HXR from the HXR of a Ge-doped layered target
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*A. R. Christopherson et al., “Direct Measurements of DT Preheat from Hot Electrons in Direct-Drive Inertial Confinement Fusion,” to be submitted to Physical Review Letters.

• is taken from theory; it is proportional to        , depends on Thot, and logarithmically on plasma densityZ
Z2

*
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Time-resolved scattered-light spectra indicate that LPI is dominated by SRS 
and is similar between the all-CH and Ge-doped payload implosions 

____________
FABS: full-aperture backscatter station
SRS: stimulated Raman scatter

Similar LPI → similar hot-electron source

Simulated plasma conditions at nc/4

NIF ignition 
scale

These 
experiments

Ln ("m) 600 400

Te (keV) 3.5 to 5 3.2
IL (W/cm2) (6 to 8) × 1014 (4 to 8) × 1014
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The hard x-ray measurement recorded with the FFLEX* diagnostic shows 
enhanced HXR emission with the Ge dopant

____________
* M. Hohenberger et al., Rev. Sci. Instrum. 85, 11D501 (2014).

FFLEX: filter-fluorescer x-ray diagnostic

THXR = Thot ≈ 50 keV
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The energy deposition in different parts of the imploding shell has been found

Energy into
Ge-doped layer (kJ) 2.0±0.4 kJ 1.1±0.3 kJ 1.0±0.3 kJ 1.2±0.3 kJ

Laser energy (%) 0.28±0.05% 0.17±0.03% 0.14±0.03% 0.16±0.03%

• All targets show 1.4±0.3% of total laser energy transferred to hot electrons
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The energy-deposition profile in the imploding shell has been inferred

• About a quarter of total hot-electron energy coupled to the implosion is coupled 
to the unablated shell, indicating a wide angular divergence of hot electrons
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OMEGA and NIF experiments show roughly similar preheat per mass, 

even though implosion conditions are different (not hydro-equivalent)

OMEGA experiments hydro-equivalent to the NIF design are proposed for FY20.

____________

* nc/4 intensity is lower, especially for the NIF (long scale lengths)
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Summary/Conclusions

Hot-electron preheat and energy deposition in the unablated shell have been 

measured in polar-direct-drive implosions on the NIF

Mid-Z layers and laser frequency detuning/bandwidth 

can reduce the hot-electron preheat.*

____________

* R. K. Follett et al., Phys. Rev. Lett. 116, 155002 (2016);

R. K. Follett et al., Phys. Plasmas 26, 062111 (2019).

NIF: National Ignition Facility
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