Nonlinear Self-Focusing of Flying Focus Pulses

T. T. Simpson, D. H. Froula, and J. P. Palastro

University of Rochester Laboratory for Laser Energetics 61st Annual Meeting of the American Physical Society Division of Plasma Physics Fort Lauderdale, FL 21–25 October 2019

Self-focusing can reduce the effective duration of flying focus pulses

- A "flying focus," a chirped pulse focused through a chromatic lens, exhibits a high-intensity peak that can travel at an arbitrary velocity over distances much greater than the Rayleigh range
- The effective duration of the intensity peak is limited by the distance it takes adjacent frequencies to come in and out of focus
- By decreasing this distance, self-focusing acts to reduce the duration of the intensity peak
- A shorter duration intensity peak can improve several flying-focus based applications, including terahertz generation, photon acceleration, and wakefield acceleration

Multiple laser applications require (1) a high intensity over an extended distance and (2) phase matching

1. For an ideal lens, the region of high intensity is limited to the Rayleigh range, L_R

2. The peak intensity is restricted to travel at the group velocity, v_{g} , of the pulse

Conventional optics limit the efficacy of different laser-based applications.

The flying focus overcomes both constraints by spatiotemporally structuring the laser pulse

By adjusting the chirp, the intensity peak can move at any velocity over a distance much greater than the Rayleigh range.

D. H. Froula et al., Nat. Photonics <u>12,</u> 262 (2018).

Several applications that could benefit from a tunable focal velocity require an ultrashort-duration intensity peak.

Self-focusing can modify the propagation of high-power flying focus laser pulses in nonlinear media

Smaller spot size, lessened diffraction

Minimal spot size, ceased propagation, shifted focus

The self-focusing of flying focus pulses can be modeled with a "frequency by the slice" picture

P. Sprangle, J. R. Peñano, and B. Hafizi, Phys. Rev. E <u>66</u>, 046418 (2002).

The self-focusing of flying focus pulses can be modeled with a "frequency by the slice" picture

Self-focusing decreases the Rayleigh range for each frequency, which shortens the effective duration of the flying focus intensity peak.

To demonstrate pulse shortening, simulations were run for the parameters of the Multi-Terawatt laser at the Laboratory for Laser Energetics

1.054
9.0
16
<1.2
Value
7
7 51
7 51 Value
7 51 <mark>Value</mark> 1.4

$$\xi = \frac{c}{n_0}t - z$$

Pulse frame coordinate

The simulations agree with the model: the on-axis intensity is spatially and temporally shortened

The simulations agree with the model: the on-axis intensity is spatially and temporally shortened

- Increasing the laser power can substantially reduce the effective duration of the intensity peak
- Eventually another process will prevent the spot size from getting too small (e.g., ionization)

.

Self-focusing can reduce the effective duration of flying focus pulses

- A "flying focus," a chirped pulse focused through a chromatic lens, exhibits a high-intensity peak that can travel at an arbitrary velocity over distances much greater than the Rayleigh range
- The effective duration of the intensity peak is limited by the distance it takes adjacent frequencies to come in and out of focus
- By decreasing this distance, self-focusing acts to reduce the duration of the intensity peak
- A shorter duration intensity peak can improve several flying-focus based applications, including terahertz generation, photon acceleration, and wakefield acceleration

Backup

Self-focusing will modify the propagation of flying focus pulses differently, depending on the focal velocity

- For large chirps ($v_f \approx c$), each frequency essentially propagates independently
- For small chirps ($v_f \approx c$), each frequency component will interact with one another

$$\Delta t = \frac{\Delta z}{v_{\rm f}} \sim \frac{Z_{\rm R}}{v_{\rm f}}$$

The time required for adjacent frequencies to come in and out of focus is related to the Rayleigh range

For an f/7 lens and a focal velocity of -c, $\Delta t \approx 2$ ps

TC15165

Several applications that could benefit from a tunable focal velocity require an ultrashort-duration intensity peak.

For a large negative chirp, the simulations agree with the model: the on-axis intensity is spatially and temporally sharpened

On-axis intensity, $P \approx 0.7 P_{cr}$

On-axis intensity, $P \ll P_{cr}$

Self-focusing could allow for sharper ionization fronts.

