Influence of In-Flight Shape on Stagnation Performance in Direct-Drive Laser Implosion Experiments

R. C. Shah University of Rochester Laboratory for Laser Energetics 61st Annual Meeting of the APS Division of Plasma Physics Fort Lauderdale, FL 21–25 October 2019

Summary

First measurements have been made of the sensitivity of stagnation performance to the in-flight low-mode symmetry ($\ell \leq 3$)

-
- A 3-D measurement is used to diagnose the in-flight low modes of 60beam gas-filled implosions*
- The yield is observed to correlate to changes in the measured lowmode symmetry
- The observed sensitivity to shape is less than half what is obtained in preliminary 3-D *ASTER* simulations including low modes and imprint

The weak response to asymmetry in the experiments is suggestive of degradation pathways not in the model.

Collaborators

I. V. Igumenshchev, C. J. Forrest, K. A. Bauer, E. M. Campbell, D. Cao, V. N. Goncharov, S. Sampat, and S. P. Regan

> University of Rochester Laboratory for Laser Energetics

Technique

The 3-D in-flight shape is obtained by imaging the x-ray self-emission of laser ablation from multiple directions

The symmetry is modified with adjustments to individual on-target laser-beam energies.

* D. T. Michel et al., Phys. Rev. Lett. <u>120</u>, 125001 (2018).

Using the 3-D measurement, a residual mode is characterized

- $\ell = 1$: Ongoing work suggests procedural issues associated with pointing
- $\ell = 2$: Clear association with mounting

Based on the 3-D measurement, a correlation is observed between in-flight symmetry and neutron production at stagnation

The hot-spot x-ray emission at stagnation exhibits changes consistent with the 3-D measurement

The experimental response to the asymmetry is weaker than predicted with 3-D calculations (accounting for in-flight symmetry and imprint) using *ASTER*^{*}.

- ASTER with low modes but without imprint show the most sensitivity (to symmetry)
- ASTER with low modes and imprint shows less sensitivity
- The experiment shows the least sensitivity

^{*} I. V. Igumenshchev et al., Phys. Plasmas 23, 052702 (2016);

First measurements have been made of the sensitivity of stagnation performance to the in-flight low-mode symmetry ($\ell \leq 3$)

- A 3-D measurement is used to diagnose the in-flight low modes of 60-beam gas-filled implosions*
- The yield is observed to correlate to changes in the measured lowmode symmetry
- The observed sensitivity to shape is less than half what is obtained in preliminary 3-D *ASTER* simulations including low modes and imprint

The weak response to asymmetry in the experiments is suggestive of degradation pathways not in the model.

Backup

Supplementary Figures

Casting yield versus laser symmetry (reported from system) does not show correlation

The best optimized implosion does not reach the calculated convergence

Note: 3-D modeling preliminary

Calculated ~ 23

