Introduction to TriForce: A multi-physics code for hybrid fluid-kinetic simulations

- based hybrid fluid-kinetic simulations.
- We are strengthening the science base in support of several continually-validated code.
- students and scientists in astrophysics, plasma, geoscience,
- The hybrid method enables capabilities beyond either of the a range of topics such as controlled nuclear fusion, astrophysics, high-energy-density physics, and high-intensity lasers.
- The goal is to provide better predictive capability and access to advanced models for the benefit of the whole community.

A.B. Sefkow^{1,2}, J. G. Shaw², J. Carroll-Nellenback^{1,2}, S. Pai¹, E. G. Blackman¹, D. Cao², J. R. C. Davies², R. K. Follett², A. Frank¹, J. L. Giuliani³, M. <u>Haddad¹</u>, E. C. Hansen⁴, S. B. Hansen⁵, S. X. Hu^{1,2}, A. Kish¹, M. Lavell¹, R. L. McCrory¹, P. W. McKenty², R. B. Spielman², A. Tu², A. Velberg¹, and A. L. Velikovich³ ¹University of Rochester, ²Laboratory for Laser Energetics, ³US Naval Research Laboratory, ⁴University of Chicago, ⁵Sandia National Laboratories Shock capturing and adaptive particle methods Planetary atmosphere evolution Comparison between TriForce (black) and the LLE 1D rad-hydro code LILAC (colors) and exoplanet habitability **ICF-relevant implosion 1D spherical geometry** Implosion of M~60 shell Outer radius = 1 mm Thin CH shell of 1 g/cc and $\Delta r = 0.1 \text{ mm}$ Initial temperature 29 Uniform v_r^{imp}=-100 km/s Central void Gbar Ideal gas EOS Orszag-Tang vortex turbulence No radiation, laser, or 8.7 ns 🕺 9.2 ns 🦯 8.55 ns 8 ns 6 ns $\rho \frac{d\mathbf{v}}{dt} = -\nabla (P + Q) - \nabla \cdot \mathbf{\Pi} + \mathbf{J} \times \mathbf{B} + \mathbf{R}$ fusion calculations Sod shock tube problem with comparison to analytic result

Electromagnetic fields

• Explicit or implicit time advance

Rectangular or triangular mesh option

Magnetic fields

A Com A COM

NIVERSITY of **ROCHESTER**

 $abla \cdot {f B} = 0$

 $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{E}}{\partial \mathbf{E}}$

3D laser amplification

via Raman backscattering

 $abla imes {f B} = \mu_0 \left(\, {f J} + arepsilon_0 rac{arepsilon - arepsilon}{\partial t} \, ig)
ight.$

 $\nabla \cdot \mathbf{E} = - -$

∩ ∩ —i i i i i i i i

0.12 0.13 0.14 0.15 0.16 0.17 0.18

Radius (cm)

Mod. SNB model $C_{v,e} \frac{dI_e}{dt} = -\nabla \cdot \boldsymbol{Q_{SH}} + C_{nonlocal}$ $(r - \nabla \cdot \frac{\lambda'_g(r)}{2} \nabla) H_g(r) = -\nabla \cdot \boldsymbol{U}_g(r)$

 $\boldsymbol{U_g}(r) = \boldsymbol{Q_{SH}} \frac{1}{24} \int_{E_{q-1}/k_b T_e}^{E_{g/N_b Te}} \beta^4 e^{-\beta} d\beta$ $\lambda_g = 2(E_{g-\frac{1}{2}}/k_b T_e)^2 \lambda_{mfp}^e$ $C_{nonlocal} = -\nabla \cdot \boldsymbol{Q_{nonlocal}} = \sum H_q^k / \lambda_q$

Loads driven self-consistently by open-circuit voltage $\frac{\varphi_{oc} - Z_0 I_s - \varphi_c}{\varphi_{oc}}$ $_{c} = \frac{I_{s} - I_{l} - \varphi_{c}/R_{loss}}{I_{s} - I_{l} - \varphi_{c}/R_{loss}}$

 $\dot{I}_l = \frac{\varphi_c - L_l I_l}{L_0 + L_l}$

- Explicit or implicit PIC (particle-in-cell) push
- to interact with meshless SPH particles

Magnetized charged particle transport

Standard scatter/gather operations are used

Acknowledgments

This material is based upon work supported by the Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Number DE-SC0017951, the U.S. Department of Energy National Nuclear Security Administration under Award No. DE-NA0003856, the University of Rochester, and the New York State Energy Research and **Development Authority.**